迈向节能和实时云计算

T. Tekreeti, T. Cao, Xiaopu Peng, T. Bhattacharya, Jianzhou Mao, X. Qin, Wei-Shinn Ku
{"title":"迈向节能和实时云计算","authors":"T. Tekreeti, T. Cao, Xiaopu Peng, T. Bhattacharya, Jianzhou Mao, X. Qin, Wei-Shinn Ku","doi":"10.1109/nas51552.2021.9605453","DOIUrl":null,"url":null,"abstract":"In modern cloud computing environments, there is a tremendous growth of data to be stored and managed in data centers. Large-scale data centers demand high utilization of computing and storage resources, which lead to expensive operational cost for energy usage. Evidence shows that consolidating virtual machines (VMs) can conserve energy consumption in clouds through VM migrations. VM-consolidation techniques, however, inevitably induce a burden on performance. To address this issue, we propose a holistic solution - EGRET - to boost energy efficiency of cloud computing platforms by seamlessly integrating the DVFS scheme with the VM-consolidation technique. EGRET dynamically determines the most energy-efficient strategy by issuing a command to either scale CPU frequencies on a VM or marking the VM as underutilized. We conduct extensive experiments to evaluate the performance of EGRET. The experimental results show that EGRET substantially improves the energy efficiency of cloud computing platforms.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Energy-Efficient and Real-Time Cloud Computing\",\"authors\":\"T. Tekreeti, T. Cao, Xiaopu Peng, T. Bhattacharya, Jianzhou Mao, X. Qin, Wei-Shinn Ku\",\"doi\":\"10.1109/nas51552.2021.9605453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern cloud computing environments, there is a tremendous growth of data to be stored and managed in data centers. Large-scale data centers demand high utilization of computing and storage resources, which lead to expensive operational cost for energy usage. Evidence shows that consolidating virtual machines (VMs) can conserve energy consumption in clouds through VM migrations. VM-consolidation techniques, however, inevitably induce a burden on performance. To address this issue, we propose a holistic solution - EGRET - to boost energy efficiency of cloud computing platforms by seamlessly integrating the DVFS scheme with the VM-consolidation technique. EGRET dynamically determines the most energy-efficient strategy by issuing a command to either scale CPU frequencies on a VM or marking the VM as underutilized. We conduct extensive experiments to evaluate the performance of EGRET. The experimental results show that EGRET substantially improves the energy efficiency of cloud computing platforms.\",\"PeriodicalId\":135930,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/nas51552.2021.9605453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代云计算环境中,需要在数据中心存储和管理的数据有了巨大的增长。大型数据中心对计算和存储资源的利用率要求很高,能源使用的运营成本也很高。有证据表明,通过虚拟机迁移,整合虚拟机可以节省云环境中的能源消耗。然而,虚拟机整合技术不可避免地会给性能带来负担。为了解决这个问题,我们提出了一个整体的解决方案——EGRET——通过无缝集成DVFS方案和虚拟机整合技术来提高云计算平台的能源效率。EGRET通过发出命令来调整VM上的CPU频率或将VM标记为未充分利用,从而动态地确定最节能的策略。我们进行了大量的实验来评估EGRET的性能。实验结果表明,EGRET极大地提高了云计算平台的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Energy-Efficient and Real-Time Cloud Computing
In modern cloud computing environments, there is a tremendous growth of data to be stored and managed in data centers. Large-scale data centers demand high utilization of computing and storage resources, which lead to expensive operational cost for energy usage. Evidence shows that consolidating virtual machines (VMs) can conserve energy consumption in clouds through VM migrations. VM-consolidation techniques, however, inevitably induce a burden on performance. To address this issue, we propose a holistic solution - EGRET - to boost energy efficiency of cloud computing platforms by seamlessly integrating the DVFS scheme with the VM-consolidation technique. EGRET dynamically determines the most energy-efficient strategy by issuing a command to either scale CPU frequencies on a VM or marking the VM as underutilized. We conduct extensive experiments to evaluate the performance of EGRET. The experimental results show that EGRET substantially improves the energy efficiency of cloud computing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NVSwap: Latency-Aware Paging using Non-Volatile Main Memory Deflection-Aware Routing Algorithm in Network on Chip against Soft Errors and Crosstalk Faults PLMC: A Predictable Tail Latency Mode Coordinator for Shared NVMe SSD with Multiple Hosts Efficient NVM Crash Consistency by Mitigating Resource Contention Characterizing AI Model Inference Applications Running in the SGX Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1