{"title":"聚合物-硅-凝胶-电解质基衬底集成铅-碳混合超级电容器的光伏独立照明系统","authors":"A. Banerjee, S. Ramasesha, A. Shukla","doi":"10.1515/eetech-2015-0001","DOIUrl":null,"url":null,"abstract":"Abstract Harnessing solar electricity generated through photovoltaic cells with lead-acid batteries remains the most compelling option at present. But lead-acid batteries have encountered problems in photovoltaic installations, mainly due to their premature failure. To circumvent the aforesaid problem, a new technology referred to as substrate-integrated lead-carbon hybrid ultracapacitor with polymeric-silica-gel electrolyte, is developed inhouse and tested for solar-electricity storage for a lighting application. The high-throughput performance tests for the device are conducted at laboratory scale and compatibility of the device for photovoltaic application is evaluated. In doing so, the device is installed with a photovoltaic panel for field test and data are collected from August 2012 through July 2013. The year round field-test data analyzed in the light of the available global-horizontalirradiance data show attractive performance for the device. It is noteworthy that, unlike lead-acid batteries, seasonal variations in solar radiance exhibit little effect on the performance of the device.","PeriodicalId":443383,"journal":{"name":"Electrochemical Energy Technology","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A photovoltaic stand-alone lighting system with polymeric-silica-gel-electrolyte-based substrate-integrated lead-carbon hybrid ultracapacitors\",\"authors\":\"A. Banerjee, S. Ramasesha, A. Shukla\",\"doi\":\"10.1515/eetech-2015-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Harnessing solar electricity generated through photovoltaic cells with lead-acid batteries remains the most compelling option at present. But lead-acid batteries have encountered problems in photovoltaic installations, mainly due to their premature failure. To circumvent the aforesaid problem, a new technology referred to as substrate-integrated lead-carbon hybrid ultracapacitor with polymeric-silica-gel electrolyte, is developed inhouse and tested for solar-electricity storage for a lighting application. The high-throughput performance tests for the device are conducted at laboratory scale and compatibility of the device for photovoltaic application is evaluated. In doing so, the device is installed with a photovoltaic panel for field test and data are collected from August 2012 through July 2013. The year round field-test data analyzed in the light of the available global-horizontalirradiance data show attractive performance for the device. It is noteworthy that, unlike lead-acid batteries, seasonal variations in solar radiance exhibit little effect on the performance of the device.\",\"PeriodicalId\":443383,\"journal\":{\"name\":\"Electrochemical Energy Technology\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Energy Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eetech-2015-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Energy Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eetech-2015-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A photovoltaic stand-alone lighting system with polymeric-silica-gel-electrolyte-based substrate-integrated lead-carbon hybrid ultracapacitors
Abstract Harnessing solar electricity generated through photovoltaic cells with lead-acid batteries remains the most compelling option at present. But lead-acid batteries have encountered problems in photovoltaic installations, mainly due to their premature failure. To circumvent the aforesaid problem, a new technology referred to as substrate-integrated lead-carbon hybrid ultracapacitor with polymeric-silica-gel electrolyte, is developed inhouse and tested for solar-electricity storage for a lighting application. The high-throughput performance tests for the device are conducted at laboratory scale and compatibility of the device for photovoltaic application is evaluated. In doing so, the device is installed with a photovoltaic panel for field test and data are collected from August 2012 through July 2013. The year round field-test data analyzed in the light of the available global-horizontalirradiance data show attractive performance for the device. It is noteworthy that, unlike lead-acid batteries, seasonal variations in solar radiance exhibit little effect on the performance of the device.