高度流动的时间相互作用图嵌入

Huidi Chen, Yun Xiong, Yangyong Zhu, Philip S. Yu
{"title":"高度流动的时间相互作用图嵌入","authors":"Huidi Chen, Yun Xiong, Yangyong Zhu, Philip S. Yu","doi":"10.1145/3442381.3449921","DOIUrl":null,"url":null,"abstract":"Capturing the topological and temporal information of interactions and predicting future interactions are crucial for many domains, such as social networks, financial transactions, and e-commerce. With the advent of co-evolutional models, the mutual influence between the interacted users and items are captured. However, existing models only update the interaction information of nodes along the timeline. It causes the problem of information asymmetry, where early updated nodes often have much less information than the most recently updated nodes. The information asymmetry is essentially a blockage of information flow. We propose HILI (Highly Liquid Temporal Interaction Graph Embeddings) to predict highly liquid embeddings on temporal interaction graphs. Our embedding model makes interaction information highly liquid without information asymmetry. A specific least recently used-based and frequency-based windows are used to determine the priority of the nodes that receive the latest interaction information. HILI updates node embeddings by attention layers. The attention layers learn the correlation between nodes and update node embedding simply and quickly. In addition, HILI elaborately designs, a self-linear layer, a linear layer initialized in a novel method. A self-linear layer reduces the expected space of predicted embedding of the next interacting node and makes predicted embedding focus more on relevant nodes. We illustrate the geometric meaning of a self-linear layer in the paper. Furthermore, the results of the experiments show that our model outperforms other state-of-the-art temporal interaction prediction models.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Highly Liquid Temporal Interaction Graph Embeddings\",\"authors\":\"Huidi Chen, Yun Xiong, Yangyong Zhu, Philip S. Yu\",\"doi\":\"10.1145/3442381.3449921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing the topological and temporal information of interactions and predicting future interactions are crucial for many domains, such as social networks, financial transactions, and e-commerce. With the advent of co-evolutional models, the mutual influence between the interacted users and items are captured. However, existing models only update the interaction information of nodes along the timeline. It causes the problem of information asymmetry, where early updated nodes often have much less information than the most recently updated nodes. The information asymmetry is essentially a blockage of information flow. We propose HILI (Highly Liquid Temporal Interaction Graph Embeddings) to predict highly liquid embeddings on temporal interaction graphs. Our embedding model makes interaction information highly liquid without information asymmetry. A specific least recently used-based and frequency-based windows are used to determine the priority of the nodes that receive the latest interaction information. HILI updates node embeddings by attention layers. The attention layers learn the correlation between nodes and update node embedding simply and quickly. In addition, HILI elaborately designs, a self-linear layer, a linear layer initialized in a novel method. A self-linear layer reduces the expected space of predicted embedding of the next interacting node and makes predicted embedding focus more on relevant nodes. We illustrate the geometric meaning of a self-linear layer in the paper. Furthermore, the results of the experiments show that our model outperforms other state-of-the-art temporal interaction prediction models.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

捕获交互的拓扑和时间信息并预测未来的交互对于许多领域都是至关重要的,例如社会网络、金融交易和电子商务。随着共同进化模型的出现,交互用户和项目之间的相互影响被捕获。然而,现有的模型只更新节点沿时间轴的交互信息。它导致了信息不对称的问题,早期更新的节点通常比最近更新的节点拥有更少的信息。信息不对称实质上是信息流的阻塞。我们提出了HILI(高液体时间相互作用图嵌入)来预测时间相互作用图上的高液体嵌入。我们的嵌入模型使交互信息高度流动,没有信息不对称。使用特定的基于最近最少使用的和基于频率的窗口来确定接收最新交互信息的节点的优先级。HILI通过关注层更新节点嵌入。注意层学习节点间的相关性,简单快速地更新节点嵌入。此外,HILI还精心设计了一个自线性层,一个以新颖方法初始化的线性层。自线性层减少了下一个交互节点预测嵌入的期望空间,使预测嵌入更加关注相关节点。本文阐述了自线性层的几何意义。此外,实验结果表明,我们的模型优于其他最先进的时间相互作用预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Liquid Temporal Interaction Graph Embeddings
Capturing the topological and temporal information of interactions and predicting future interactions are crucial for many domains, such as social networks, financial transactions, and e-commerce. With the advent of co-evolutional models, the mutual influence between the interacted users and items are captured. However, existing models only update the interaction information of nodes along the timeline. It causes the problem of information asymmetry, where early updated nodes often have much less information than the most recently updated nodes. The information asymmetry is essentially a blockage of information flow. We propose HILI (Highly Liquid Temporal Interaction Graph Embeddings) to predict highly liquid embeddings on temporal interaction graphs. Our embedding model makes interaction information highly liquid without information asymmetry. A specific least recently used-based and frequency-based windows are used to determine the priority of the nodes that receive the latest interaction information. HILI updates node embeddings by attention layers. The attention layers learn the correlation between nodes and update node embedding simply and quickly. In addition, HILI elaborately designs, a self-linear layer, a linear layer initialized in a novel method. A self-linear layer reduces the expected space of predicted embedding of the next interacting node and makes predicted embedding focus more on relevant nodes. We illustrate the geometric meaning of a self-linear layer in the paper. Furthermore, the results of the experiments show that our model outperforms other state-of-the-art temporal interaction prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1