F. Malena, X. Aragonès, D. Mateo, Michele Caselli, A. Boni
{"title":"物联网设备的超低电压射频前端接收器","authors":"F. Malena, X. Aragonès, D. Mateo, Michele Caselli, A. Boni","doi":"10.1109/prime55000.2022.9816813","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an RF receiver front-end for IoT application, integrating a low noise amplifier (LNA) and an active mixer. The circuit is designed in 28-nm FDSOI technology, to operate on the ISM 2.4-2.5 GHz band. The inductor-less LNA exploits the parasitic package inductance as resonant load, limiting chip area and costs. The receiver, designed for the stringent requirements of the application, operates with a voltage supply of 0.35 V, and it exhibits in simulation a power consumption below 45 μW. Besides, it achieves a voltage gain of 27.4 dB, a Third Order Input Intercept Point (IIP3) of -26.8dBm, and a noise Figure (NF) of 12.8 dB, with an intermediate frequency (FI) of 2 MHz. The small area of only 0.0021 mm2, combined with the low power consumption and operating voltage, makes the proposed RF receiver well-suited for the IoT application domain.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultra Low-Voltage RF Front-end Receiver for IoT Devices\",\"authors\":\"F. Malena, X. Aragonès, D. Mateo, Michele Caselli, A. Boni\",\"doi\":\"10.1109/prime55000.2022.9816813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of an RF receiver front-end for IoT application, integrating a low noise amplifier (LNA) and an active mixer. The circuit is designed in 28-nm FDSOI technology, to operate on the ISM 2.4-2.5 GHz band. The inductor-less LNA exploits the parasitic package inductance as resonant load, limiting chip area and costs. The receiver, designed for the stringent requirements of the application, operates with a voltage supply of 0.35 V, and it exhibits in simulation a power consumption below 45 μW. Besides, it achieves a voltage gain of 27.4 dB, a Third Order Input Intercept Point (IIP3) of -26.8dBm, and a noise Figure (NF) of 12.8 dB, with an intermediate frequency (FI) of 2 MHz. The small area of only 0.0021 mm2, combined with the low power consumption and operating voltage, makes the proposed RF receiver well-suited for the IoT application domain.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Ultra Low-Voltage RF Front-end Receiver for IoT Devices
This paper presents the design of an RF receiver front-end for IoT application, integrating a low noise amplifier (LNA) and an active mixer. The circuit is designed in 28-nm FDSOI technology, to operate on the ISM 2.4-2.5 GHz band. The inductor-less LNA exploits the parasitic package inductance as resonant load, limiting chip area and costs. The receiver, designed for the stringent requirements of the application, operates with a voltage supply of 0.35 V, and it exhibits in simulation a power consumption below 45 μW. Besides, it achieves a voltage gain of 27.4 dB, a Third Order Input Intercept Point (IIP3) of -26.8dBm, and a noise Figure (NF) of 12.8 dB, with an intermediate frequency (FI) of 2 MHz. The small area of only 0.0021 mm2, combined with the low power consumption and operating voltage, makes the proposed RF receiver well-suited for the IoT application domain.