数据分类中机器学习算法的比较

C. A. U. Hassan, Muhammad Sufyan Khan, M. A. Shah
{"title":"数据分类中机器学习算法的比较","authors":"C. A. U. Hassan, Muhammad Sufyan Khan, M. A. Shah","doi":"10.23919/IConAC.2018.8748995","DOIUrl":null,"url":null,"abstract":"Data Mining is used to extract the valuable information from raw data. The task of data mining is to utilize the historical data to discover hidden patterns that helpful for future decisions. To analyze the data machine learning classifiers are used. Various data mining approaches and machine learning classifiers are applied for prediction of diseases. Where can supports, in timely treatment. The aim of this work is to compare the performance of ML classifier. These ML classifiers are Logistic Regression, Decision Tree, Niven Bayes, k-Nearest Neighbors, Support Vector Machine and Random Forests classifiers on two datasets on the basis of its accuracy, precision and f measure. The experimental results reveal that it's found that the Random Forests performance is better than the other classifiers. It gives 83% accuracy in heart data sets and 85% accuracy in hepatitis disease prediction","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"23 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Comparison of Machine Learning Algorithms in Data classification\",\"authors\":\"C. A. U. Hassan, Muhammad Sufyan Khan, M. A. Shah\",\"doi\":\"10.23919/IConAC.2018.8748995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Mining is used to extract the valuable information from raw data. The task of data mining is to utilize the historical data to discover hidden patterns that helpful for future decisions. To analyze the data machine learning classifiers are used. Various data mining approaches and machine learning classifiers are applied for prediction of diseases. Where can supports, in timely treatment. The aim of this work is to compare the performance of ML classifier. These ML classifiers are Logistic Regression, Decision Tree, Niven Bayes, k-Nearest Neighbors, Support Vector Machine and Random Forests classifiers on two datasets on the basis of its accuracy, precision and f measure. The experimental results reveal that it's found that the Random Forests performance is better than the other classifiers. It gives 83% accuracy in heart data sets and 85% accuracy in hepatitis disease prediction\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"23 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8748995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8748995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

数据挖掘用于从原始数据中提取有价值的信息。数据挖掘的任务是利用历史数据来发现有助于未来决策的隐藏模式。为了分析数据,使用了机器学习分类器。各种数据挖掘方法和机器学习分类器被应用于疾病预测。凡能支持的,在及时治疗。这项工作的目的是比较机器学习分类器的性能。这些机器学习分类器是逻辑回归、决策树、尼文贝叶斯、k近邻、支持向量机和随机森林分类器,基于其准确性、精密度和f度量。实验结果表明,随机森林分类器的性能优于其他分类器。它对心脏数据集的预测准确率为83%,对肝炎疾病的预测准确率为85%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Machine Learning Algorithms in Data classification
Data Mining is used to extract the valuable information from raw data. The task of data mining is to utilize the historical data to discover hidden patterns that helpful for future decisions. To analyze the data machine learning classifiers are used. Various data mining approaches and machine learning classifiers are applied for prediction of diseases. Where can supports, in timely treatment. The aim of this work is to compare the performance of ML classifier. These ML classifiers are Logistic Regression, Decision Tree, Niven Bayes, k-Nearest Neighbors, Support Vector Machine and Random Forests classifiers on two datasets on the basis of its accuracy, precision and f measure. The experimental results reveal that it's found that the Random Forests performance is better than the other classifiers. It gives 83% accuracy in heart data sets and 85% accuracy in hepatitis disease prediction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1