一种高性能、节能、可靠的新型复制存储系统

Ji-guang Wan, Chao Yin, Jun Wang, C. Xie
{"title":"一种高性能、节能、可靠的新型复制存储系统","authors":"Ji-guang Wan, Chao Yin, Jun Wang, C. Xie","doi":"10.1109/MSST.2012.6232373","DOIUrl":null,"url":null,"abstract":"In modern replication storage systems where data carries two or more multiple copies, a primary group of disks is always up to service incoming requests while other disks are often spun down to sleep states to save energy during slack periods. However, since new writes cannot be immediately synchronized onto all disks, system reliability is degraded. This paper develops PERAID, a new high-performance, energy-efficient replication storage system, which aims to improve both performance and energy efficiency without compromising reliability. It employs a parity software RAID as a virtual write buffer disk at the front end to absorb new writes. Since extra parity redundancy supplies two or more copies, PERAID guarantees comparable reliability with that of a replication storage system. In addition, PERAID offers better write performance compared to the replication system by avoiding the classical small-write problem in traditional parity RAID: buffering many small random writes into few large writes and writing to storage in a parallel fashion. By evaluating our PERAID prototype using two benchmarks and two real-life traces, we found that PERAID significantly improves write performance and saves more energy than existing solutions such as GRAID, eRAID.","PeriodicalId":348234,"journal":{"name":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"18 779 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new high-performance, energy-efficient replication storage system with reliability guarantee\",\"authors\":\"Ji-guang Wan, Chao Yin, Jun Wang, C. Xie\",\"doi\":\"10.1109/MSST.2012.6232373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern replication storage systems where data carries two or more multiple copies, a primary group of disks is always up to service incoming requests while other disks are often spun down to sleep states to save energy during slack periods. However, since new writes cannot be immediately synchronized onto all disks, system reliability is degraded. This paper develops PERAID, a new high-performance, energy-efficient replication storage system, which aims to improve both performance and energy efficiency without compromising reliability. It employs a parity software RAID as a virtual write buffer disk at the front end to absorb new writes. Since extra parity redundancy supplies two or more copies, PERAID guarantees comparable reliability with that of a replication storage system. In addition, PERAID offers better write performance compared to the replication system by avoiding the classical small-write problem in traditional parity RAID: buffering many small random writes into few large writes and writing to storage in a parallel fashion. By evaluating our PERAID prototype using two benchmarks and two real-life traces, we found that PERAID significantly improves write performance and saves more energy than existing solutions such as GRAID, eRAID.\",\"PeriodicalId\":348234,\"journal\":{\"name\":\"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)\",\"volume\":\"18 779 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSST.2012.6232373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2012.6232373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在数据携带两个或多个副本的现代复制存储系统中,一组主磁盘总是用于处理传入的请求,而其他磁盘通常休眠到休眠状态,以便在空闲期间节省能源。但是,由于新的写操作不能立即同步到所有磁盘,因此降低了系统可靠性。本文开发了一种新的高性能、节能的复制存储系统PERAID,其目的是在不影响可靠性的情况下提高性能和能源效率。它采用奇偶校验软件RAID作为前端的虚拟写缓冲盘来吸收新的写。由于额外的奇偶冗余提供了两个或更多的副本,PERAID保证了与复制存储系统相当的可靠性。此外,与复制系统相比,PERAID提供了更好的写入性能,因为它避免了传统奇偶校验RAID中常见的小写入问题:将许多小的随机写入缓冲为少量大写入,并以并行方式写入存储。通过使用两个基准测试和两个实际跟踪来评估我们的PERAID原型,我们发现PERAID显著提高了写入性能,并且比现有的解决方案(如GRAID、eRAID)节省了更多的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new high-performance, energy-efficient replication storage system with reliability guarantee
In modern replication storage systems where data carries two or more multiple copies, a primary group of disks is always up to service incoming requests while other disks are often spun down to sleep states to save energy during slack periods. However, since new writes cannot be immediately synchronized onto all disks, system reliability is degraded. This paper develops PERAID, a new high-performance, energy-efficient replication storage system, which aims to improve both performance and energy efficiency without compromising reliability. It employs a parity software RAID as a virtual write buffer disk at the front end to absorb new writes. Since extra parity redundancy supplies two or more copies, PERAID guarantees comparable reliability with that of a replication storage system. In addition, PERAID offers better write performance compared to the replication system by avoiding the classical small-write problem in traditional parity RAID: buffering many small random writes into few large writes and writing to storage in a parallel fashion. By evaluating our PERAID prototype using two benchmarks and two real-life traces, we found that PERAID significantly improves write performance and saves more energy than existing solutions such as GRAID, eRAID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRAID6ML: A hybrid RAID6 storage architecture with mirrored logging Storage challenges at Los Alamos National Lab Shortcut-JFS: A write efficient journaling file system for phase change memory SLO-aware hybrid store On the speedup of single-disk failure recovery in XOR-coded storage systems: Theory and practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1