{"title":"超级电容器的自放电:原因、影响和治疗综述","authors":"Yuping Wu, R. Holze","doi":"10.1515/eetech-2020-0100","DOIUrl":null,"url":null,"abstract":"Abstract Self-discharge as an omnipresent and unwelcome feature of electrochemical storage devices driven by fundamental forces is briefly introduced and put into perspective. Causes and observed effects as well as possible consequences and modifications in support of a therapy of these effects are described. Care is taken to consider observed phenomena with respect to different types of supercapacitors and different classes of electrode materials and additives inside a cell. Modeling and further theoretical approaches are presented. Recommendations for reporting and data presentation are provided.","PeriodicalId":443383,"journal":{"name":"Electrochemical Energy Technology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Self-discharge in supercapacitors: Causes, effects and therapies: An overview\",\"authors\":\"Yuping Wu, R. Holze\",\"doi\":\"10.1515/eetech-2020-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Self-discharge as an omnipresent and unwelcome feature of electrochemical storage devices driven by fundamental forces is briefly introduced and put into perspective. Causes and observed effects as well as possible consequences and modifications in support of a therapy of these effects are described. Care is taken to consider observed phenomena with respect to different types of supercapacitors and different classes of electrode materials and additives inside a cell. Modeling and further theoretical approaches are presented. Recommendations for reporting and data presentation are provided.\",\"PeriodicalId\":443383,\"journal\":{\"name\":\"Electrochemical Energy Technology\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Energy Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eetech-2020-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Energy Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eetech-2020-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-discharge in supercapacitors: Causes, effects and therapies: An overview
Abstract Self-discharge as an omnipresent and unwelcome feature of electrochemical storage devices driven by fundamental forces is briefly introduced and put into perspective. Causes and observed effects as well as possible consequences and modifications in support of a therapy of these effects are described. Care is taken to consider observed phenomena with respect to different types of supercapacitors and different classes of electrode materials and additives inside a cell. Modeling and further theoretical approaches are presented. Recommendations for reporting and data presentation are provided.