玻璃层合板断裂桥接行为模拟的微尺度离散元模型

Xing-er Wang, Jian Yang, Shennan Peng, Yige Wang, X. Hou
{"title":"玻璃层合板断裂桥接行为模拟的微尺度离散元模型","authors":"Xing-er Wang, Jian Yang, Shennan Peng, Yige Wang, X. Hou","doi":"10.47982/cgc.8.451","DOIUrl":null,"url":null,"abstract":"The bridging behavior between fragments is one vital factor in the post-fracture stage of glass laminates. A particle-based discrete element model was developed in this work to simulate the bridging behavior of fractured glass laminates. The model was based on the calibration of hyperelastic PVB material properties using soft-bond model and further validated with the experimental data as well as the observations from through-crack-tensile tests. In order to investigate the bridging performance of fractured glass laminates with multiple fragments under uniaxial tension, three factors encompassing the crack aligning, fragment number and adhesion conditions were considered to perform a parametric study. The results give an exploratory application of the developed discrete element models in the estimation of the post-fracture behaviors. It is found that the smaller fragment size can diminish the tension-stiffening effect in the non-aligned case which might generate an enhancing ratio of initial modulus up to nearly 3.6. The non-aligned cracks can also lead to a very high strength if the adhesion ability can be guaranteed. However, the delamination of fragments is expected to control the post-fracture strength of fractured glass laminates with PVB interlayer.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microscale Discrete Element Model for Simulating Bridging Behavior of Fractured Glass Laminates\",\"authors\":\"Xing-er Wang, Jian Yang, Shennan Peng, Yige Wang, X. Hou\",\"doi\":\"10.47982/cgc.8.451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bridging behavior between fragments is one vital factor in the post-fracture stage of glass laminates. A particle-based discrete element model was developed in this work to simulate the bridging behavior of fractured glass laminates. The model was based on the calibration of hyperelastic PVB material properties using soft-bond model and further validated with the experimental data as well as the observations from through-crack-tensile tests. In order to investigate the bridging performance of fractured glass laminates with multiple fragments under uniaxial tension, three factors encompassing the crack aligning, fragment number and adhesion conditions were considered to perform a parametric study. The results give an exploratory application of the developed discrete element models in the estimation of the post-fracture behaviors. It is found that the smaller fragment size can diminish the tension-stiffening effect in the non-aligned case which might generate an enhancing ratio of initial modulus up to nearly 3.6. The non-aligned cracks can also lead to a very high strength if the adhesion ability can be guaranteed. However, the delamination of fragments is expected to control the post-fracture strength of fractured glass laminates with PVB interlayer.\",\"PeriodicalId\":332145,\"journal\":{\"name\":\"Challenging Glass Conference Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Challenging Glass Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/cgc.8.451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenging Glass Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/cgc.8.451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

碎片间的桥接行为是影响玻璃层合板断裂后阶段的一个重要因素。本文建立了一种基于颗粒的离散元模型来模拟破碎玻璃层压板的桥接行为。采用软键模型对超弹性PVB材料的性能进行了标定,并用实验数据和贯通拉伸试验结果对模型进行了验证。为了研究单轴拉伸下多碎片玻璃层合板的桥接性能,考虑了裂纹对准、碎片数量和粘附条件三个因素,进行了参数化研究。结果表明,所建立的离散元模型在估计断裂后行为方面具有探索性的应用。研究发现,较小的碎片尺寸可以减小非对准情况下的拉伸加劲效应,使初始模量的增强比接近3.6。如果能保证粘接能力,不对齐的裂纹也可以导致非常高的强度。然而,碎片的脱层有望控制PVB夹层玻璃破碎后的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscale Discrete Element Model for Simulating Bridging Behavior of Fractured Glass Laminates
The bridging behavior between fragments is one vital factor in the post-fracture stage of glass laminates. A particle-based discrete element model was developed in this work to simulate the bridging behavior of fractured glass laminates. The model was based on the calibration of hyperelastic PVB material properties using soft-bond model and further validated with the experimental data as well as the observations from through-crack-tensile tests. In order to investigate the bridging performance of fractured glass laminates with multiple fragments under uniaxial tension, three factors encompassing the crack aligning, fragment number and adhesion conditions were considered to perform a parametric study. The results give an exploratory application of the developed discrete element models in the estimation of the post-fracture behaviors. It is found that the smaller fragment size can diminish the tension-stiffening effect in the non-aligned case which might generate an enhancing ratio of initial modulus up to nearly 3.6. The non-aligned cracks can also lead to a very high strength if the adhesion ability can be guaranteed. However, the delamination of fragments is expected to control the post-fracture strength of fractured glass laminates with PVB interlayer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress Distribution along the Structural Sealant Joint Length of a Cylindrically Curved Glazing Panel Restoring Hi-Tech Architecture Early-Detection of EVA Encapsulant Degradation in PV Modules Based on Vibration Frequency Analysis Panoramic Perfection: Unveiling Technical Insights from “The Henderson” in Hong Kong A Portable Technology for Measuring Haze Levels in Thick Laminated Glass Panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1