基于加权类内方差和扩展互信息正则化的深度模糊聚类

Yunsheng Pang, Feiyu Chen, Sheng Huang, Yongxin Ge, Wei Wang, Taiping Zhang
{"title":"基于加权类内方差和扩展互信息正则化的深度模糊聚类","authors":"Yunsheng Pang, Feiyu Chen, Sheng Huang, Yongxin Ge, Wei Wang, Taiping Zhang","doi":"10.1109/ICDMW51313.2020.00137","DOIUrl":null,"url":null,"abstract":"Recently, many joint deep clustering methods, which simultaneously learn latent embedding and predict clustering assignments through deep neural network, have received a lot of attention. Among these methods, KL divergence based clustering framework is one of the most popular branches. However, the clustering performances of these methods depend on an additional auxiliary target distribution. In this paper, we build a novel deep fuzzy clustering (DFC) network to learn discriminative and balanced assignment without the need of any auxiliary distribution. Specifically, we design an elaborate fuzzy clustering layer (FCL) to estimate more discriminative assignments, and utilize weighted intra-class variance (WIV) as clustering objective function to enhance the compactness of the learned embedding. Moreover, we propose extended mutual information (EMI) between input data and the corresponding clustering assignments as a regularization to achieve “fair” but “firm” assignment. Extensive experiments conducted on several datasets illustrate the superiority of the proposed approach comparing to the state-of-the-art methods.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Fuzzy Clustering with Weighted Intra-class Variance and Extended Mutual Information Regularization\",\"authors\":\"Yunsheng Pang, Feiyu Chen, Sheng Huang, Yongxin Ge, Wei Wang, Taiping Zhang\",\"doi\":\"10.1109/ICDMW51313.2020.00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many joint deep clustering methods, which simultaneously learn latent embedding and predict clustering assignments through deep neural network, have received a lot of attention. Among these methods, KL divergence based clustering framework is one of the most popular branches. However, the clustering performances of these methods depend on an additional auxiliary target distribution. In this paper, we build a novel deep fuzzy clustering (DFC) network to learn discriminative and balanced assignment without the need of any auxiliary distribution. Specifically, we design an elaborate fuzzy clustering layer (FCL) to estimate more discriminative assignments, and utilize weighted intra-class variance (WIV) as clustering objective function to enhance the compactness of the learned embedding. Moreover, we propose extended mutual information (EMI) between input data and the corresponding clustering assignments as a regularization to achieve “fair” but “firm” assignment. Extensive experiments conducted on several datasets illustrate the superiority of the proposed approach comparing to the state-of-the-art methods.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,利用深度神经网络学习潜在嵌入和预测聚类分配的联合深度聚类方法受到了广泛的关注。在这些方法中,基于KL散度的聚类框架是最受欢迎的分支之一。然而,这些方法的聚类性能依赖于一个额外的辅助目标分布。在本文中,我们建立了一种新的深度模糊聚类(DFC)网络,在不需要任何辅助分布的情况下学习判别和平衡分配。具体来说,我们设计了一个精细的模糊聚类层(FCL)来估计更多的判别分配,并利用加权类内方差(WIV)作为聚类目标函数来增强学习嵌入的紧密性。此外,我们提出了输入数据和相应的聚类分配之间的扩展互信息(EMI)作为正则化,以实现“公平”但“确定”的分配。在几个数据集上进行的大量实验表明,与最先进的方法相比,所提出的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Fuzzy Clustering with Weighted Intra-class Variance and Extended Mutual Information Regularization
Recently, many joint deep clustering methods, which simultaneously learn latent embedding and predict clustering assignments through deep neural network, have received a lot of attention. Among these methods, KL divergence based clustering framework is one of the most popular branches. However, the clustering performances of these methods depend on an additional auxiliary target distribution. In this paper, we build a novel deep fuzzy clustering (DFC) network to learn discriminative and balanced assignment without the need of any auxiliary distribution. Specifically, we design an elaborate fuzzy clustering layer (FCL) to estimate more discriminative assignments, and utilize weighted intra-class variance (WIV) as clustering objective function to enhance the compactness of the learned embedding. Moreover, we propose extended mutual information (EMI) between input data and the corresponding clustering assignments as a regularization to achieve “fair” but “firm” assignment. Extensive experiments conducted on several datasets illustrate the superiority of the proposed approach comparing to the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1