基于主成分分析和粒子群优化的电磁信号分离方法

Liu Hongyi, Zhao Di, Wen Xi
{"title":"基于主成分分析和粒子群优化的电磁信号分离方法","authors":"Liu Hongyi, Zhao Di, Wen Xi","doi":"10.1109/ICCIAUTOM.2011.6183891","DOIUrl":null,"url":null,"abstract":"In a complex electromagnetic environment, and with little knowledge about the source electromagnetic signals, it is a big challenge to analyze an electronic system's electromagnetic compatibility (EMC) or arrange the electromagnetic signal source properly. To solve this problem, useful signals and noise signals should be separated first from the mixed signals that can be measured. In this paper, we proposed a separation method which mainly takes two steps. The first step is to determine the number of source signals by combining the Principle component analysis (PCA) and the maximum likelihood estimation (MLE) methods. The second step is to separate the mixed observation signals. We achieve this by using the particle swarm algorithm. A simulation experiment is given to demonstrate the validity and efficiency of the proposed separation algorithm.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"23 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A principal component analysis and partical swarm optimization based method for separation of electromagnetic signals\",\"authors\":\"Liu Hongyi, Zhao Di, Wen Xi\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a complex electromagnetic environment, and with little knowledge about the source electromagnetic signals, it is a big challenge to analyze an electronic system's electromagnetic compatibility (EMC) or arrange the electromagnetic signal source properly. To solve this problem, useful signals and noise signals should be separated first from the mixed signals that can be measured. In this paper, we proposed a separation method which mainly takes two steps. The first step is to determine the number of source signals by combining the Principle component analysis (PCA) and the maximum likelihood estimation (MLE) methods. The second step is to separate the mixed observation signals. We achieve this by using the particle swarm algorithm. A simulation experiment is given to demonstrate the validity and efficiency of the proposed separation algorithm.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"23 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的电磁环境中,在对源电磁信号知之甚少的情况下,如何分析电子系统的电磁兼容性或合理布置电磁信号源是一个很大的挑战。要解决这个问题,首先要从可测的混合信号中分离出有用信号和噪声信号。本文提出了一种主要分为两步的分离方法。第一步是结合主成分分析(PCA)和最大似然估计(MLE)方法确定源信号的个数。第二步是对混合观测信号进行分离。我们通过使用粒子群算法来实现这一点。仿真实验验证了该分离算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A principal component analysis and partical swarm optimization based method for separation of electromagnetic signals
In a complex electromagnetic environment, and with little knowledge about the source electromagnetic signals, it is a big challenge to analyze an electronic system's electromagnetic compatibility (EMC) or arrange the electromagnetic signal source properly. To solve this problem, useful signals and noise signals should be separated first from the mixed signals that can be measured. In this paper, we proposed a separation method which mainly takes two steps. The first step is to determine the number of source signals by combining the Principle component analysis (PCA) and the maximum likelihood estimation (MLE) methods. The second step is to separate the mixed observation signals. We achieve this by using the particle swarm algorithm. A simulation experiment is given to demonstrate the validity and efficiency of the proposed separation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic scheduling parallel test system with CVI A research of algorithm based on probability weighted fuzzy association rules Design of assembly line of diesel engine factory based on RFID technology Application of genetic algorithm in computer aided design A new method of parameters determined in image recognition by PCNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1