{"title":"深度时间感知矩阵分解","authors":"Tongtong Liu, Wenming Ma, Yulong Song","doi":"10.1109/CISP-BMEI51763.2020.9263503","DOIUrl":null,"url":null,"abstract":"The appearance of recommendation system solves the problem of information overload. Traditional recommendation systems generally consider the preferences of users, but ignore external conditions, such as the timeliness and popularity of goods.In this experiment, the time factor is added to form a triple, like User-Item-Time, and the neural network is used for training. Compared with the matrix factorization experiment which integrates time factor, the prediction effect is better when the movie popularity is integrated into the recommendation.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Time-Aware Matrix Factorization\",\"authors\":\"Tongtong Liu, Wenming Ma, Yulong Song\",\"doi\":\"10.1109/CISP-BMEI51763.2020.9263503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The appearance of recommendation system solves the problem of information overload. Traditional recommendation systems generally consider the preferences of users, but ignore external conditions, such as the timeliness and popularity of goods.In this experiment, the time factor is added to form a triple, like User-Item-Time, and the neural network is used for training. Compared with the matrix factorization experiment which integrates time factor, the prediction effect is better when the movie popularity is integrated into the recommendation.\",\"PeriodicalId\":346757,\"journal\":{\"name\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI51763.2020.9263503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推荐系统的出现解决了信息过载的问题。传统的推荐系统一般考虑用户的偏好,而忽略了外部条件,如商品的时效性和受欢迎程度。在本实验中,将时间因子相加形成一个三重,如User-Item-Time,并使用神经网络进行训练。与集成时间因素的矩阵分解实验相比,将电影人气纳入推荐的预测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Time-Aware Matrix Factorization
The appearance of recommendation system solves the problem of information overload. Traditional recommendation systems generally consider the preferences of users, but ignore external conditions, such as the timeliness and popularity of goods.In this experiment, the time factor is added to form a triple, like User-Item-Time, and the neural network is used for training. Compared with the matrix factorization experiment which integrates time factor, the prediction effect is better when the movie popularity is integrated into the recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Attack Detection based on Domain Attack Behavior Analysis Feature selection of time series based on reinforcement learning An Improved Double-Layer Kalman Filter Attitude Algorithm For Motion Capture System Probability Boltzmann Machine Network for Face Detection on Video Evolutionary Optimized Multiple Instance Concept Learning for Beat-to-Beat Heart Rate Estimation from Electrocardiograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1