基于用户交互图的顺序意图感知推荐

Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei
{"title":"基于用户交互图的顺序意图感知推荐","authors":"Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei","doi":"10.1145/3512527.3531390","DOIUrl":null,"url":null,"abstract":"The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Intention-aware Recommender based on User Interaction Graph\",\"authors\":\"Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei\",\"doi\":\"10.1145/3512527.3531390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

下一项推荐问题近年来越来越受到研究者的关注。现有算法忽略了隐式的项目语义信息,更多地关注用户-项目二元关系,存在数据稀疏性高的问题。考虑到用户的决策过程经常受到意图和偏好的双重影响,本文提出了一种基于用户交互图(Satori)的顺序意图感知推荐器。在Satori中,我们首先使用一种新的用户交互图来构建用户、项目和类别之间的关系。然后,我们利用图关注网络提取图上的辅助特征并生成三个嵌入。其次,我们采用自注意机制分别对用户意向和偏好建模,然后将其组合形成混合用户表示。最后,混合用户表示和之前获得的项目表示都被发送到预测模块,计算预测的项目得分。在真实世界的数据集上进行测试,结果证明我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Intention-aware Recommender based on User Interaction Graph
The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1