Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei
{"title":"基于用户交互图的顺序意图感知推荐","authors":"Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei","doi":"10.1145/3512527.3531390","DOIUrl":null,"url":null,"abstract":"The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Intention-aware Recommender based on User Interaction Graph\",\"authors\":\"Jinpeng Chen, Yuan Cao, Fan Zhang, Pengfei Sun, Kaimin Wei\",\"doi\":\"10.1145/3512527.3531390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequential Intention-aware Recommender based on User Interaction Graph
The next-item recommendation problem has received more and more attention from researchers in recent years. Ignoring the implicit item semantic information, existing algorithms focus more on the user-item binary relationship and suffer from high data sparsity. Inspired by the fact that user's decision-making process is often influenced by both intention and preference, this paper presents a SequentiAl inTentiOn-aware Recommender based on a user Interaction graph (Satori). In Satori, we first use a novel user interaction graph to construct relationships between users, items, and categories. Then, we leverage a graph attention network to extract auxiliary features on the graph and generate the three embeddings. Next, we adopt self-attention mechanism to model user intention and preference respectively which are later combined to form a hybrid user representation. Finally, the hybrid user representation and previously obtained item representation are both sent to the prediction modul to calculate the predicted item score. Testing on real-world datasets, the results prove that our approach outperforms state-of-the-art methods.