基于随机矩阵的机动目标跟踪改进扩展状态估计方法

Qiyng. Hu, H. Ji, Yongquan Zhang
{"title":"基于随机矩阵的机动目标跟踪改进扩展状态估计方法","authors":"Qiyng. Hu, H. Ji, Yongquan Zhang","doi":"10.23919/ICIF.2017.8009678","DOIUrl":null,"url":null,"abstract":"The Gaussian inverse Wishart (GIW) filter is a promising filter for extended target tracking and draws tremendous attention in recent years. The Gaussian and the inverse Wishart distributions are used to describe the target's kinematical and extended states, respectively. However, the filter for estimating the extended state contains predicting position error and causes large error of the extended state estimation, especially for the scenarios with high-maneuvering. In this paper, we eliminate the influence of the predicting position error via reconstructing the updated equation for estimating extended state. Based on GIW probability hypotheses density (GIW-PHD) framework, the improved filter is tested in a maneuvering scenario and the comparative results verify the superior performance of the filter in terms of the extended state estimation.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved extended state estimation approach for maneuvering target tracking using random matrix\",\"authors\":\"Qiyng. Hu, H. Ji, Yongquan Zhang\",\"doi\":\"10.23919/ICIF.2017.8009678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian inverse Wishart (GIW) filter is a promising filter for extended target tracking and draws tremendous attention in recent years. The Gaussian and the inverse Wishart distributions are used to describe the target's kinematical and extended states, respectively. However, the filter for estimating the extended state contains predicting position error and causes large error of the extended state estimation, especially for the scenarios with high-maneuvering. In this paper, we eliminate the influence of the predicting position error via reconstructing the updated equation for estimating extended state. Based on GIW probability hypotheses density (GIW-PHD) framework, the improved filter is tested in a maneuvering scenario and the comparative results verify the superior performance of the filter in terms of the extended state estimation.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯逆Wishart (GIW)滤波器是一种很有前途的扩展目标跟踪滤波器,近年来引起了广泛的关注。高斯分布和逆Wishart分布分别用于描述目标的运动状态和扩展状态。然而,用于扩展状态估计的滤波器包含位置预测误差,导致扩展状态估计误差较大,特别是在高机动场景下。本文通过重构扩展状态估计的更新方程,消除了位置预测误差的影响。基于GIW概率假设密度(GIW- phd)框架,在机动场景中对改进的滤波器进行了测试,对比结果验证了该滤波器在扩展状态估计方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved extended state estimation approach for maneuvering target tracking using random matrix
The Gaussian inverse Wishart (GIW) filter is a promising filter for extended target tracking and draws tremendous attention in recent years. The Gaussian and the inverse Wishart distributions are used to describe the target's kinematical and extended states, respectively. However, the filter for estimating the extended state contains predicting position error and causes large error of the extended state estimation, especially for the scenarios with high-maneuvering. In this paper, we eliminate the influence of the predicting position error via reconstructing the updated equation for estimating extended state. Based on GIW probability hypotheses density (GIW-PHD) framework, the improved filter is tested in a maneuvering scenario and the comparative results verify the superior performance of the filter in terms of the extended state estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1