基于卷积神经网络的复杂背景SAR目标识别

Yuanyuan Zhou, Tingjun Chen, Jinchuan Tian, Zenan Zhou, Chen Wang, X. Yang, Jun Shi
{"title":"基于卷积神经网络的复杂背景SAR目标识别","authors":"Yuanyuan Zhou, Tingjun Chen, Jinchuan Tian, Zenan Zhou, Chen Wang, X. Yang, Jun Shi","doi":"10.1109/APSAR46974.2019.9048279","DOIUrl":null,"url":null,"abstract":"Deep learning networks are widely being applied to remote sensing image recognition and have achieved promising results. In this paper, we researched the influence of background with different scattering characteristics for synthetic aperture radar (SAR) target recognition based on convolutional neural network (CNN). Firstly, a two-parameter CFAR image segmentation method based on Weibull distribution was used to extracted SAR target and its shadow. And then, SAR datasets with road, farmland and grassland background environment is synthesized to analyze the CNN classifier. Experiments results show that the method by mixing training sets with different background together can improve the recognization rate when the backgrounds are complex.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Complex Background SAR Target Recognition Based on Convolution Neural Network\",\"authors\":\"Yuanyuan Zhou, Tingjun Chen, Jinchuan Tian, Zenan Zhou, Chen Wang, X. Yang, Jun Shi\",\"doi\":\"10.1109/APSAR46974.2019.9048279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning networks are widely being applied to remote sensing image recognition and have achieved promising results. In this paper, we researched the influence of background with different scattering characteristics for synthetic aperture radar (SAR) target recognition based on convolutional neural network (CNN). Firstly, a two-parameter CFAR image segmentation method based on Weibull distribution was used to extracted SAR target and its shadow. And then, SAR datasets with road, farmland and grassland background environment is synthesized to analyze the CNN classifier. Experiments results show that the method by mixing training sets with different background together can improve the recognization rate when the backgrounds are complex.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习网络在遥感图像识别中得到了广泛的应用,并取得了良好的效果。本文研究了不同散射特性背景对基于卷积神经网络(CNN)的合成孔径雷达(SAR)目标识别的影响。首先,采用基于威布尔分布的双参数CFAR图像分割方法提取SAR目标及其阴影;然后,合成具有道路、农田和草地背景环境的SAR数据集,对CNN分类器进行分析。实验结果表明,将不同背景的训练集混合在一起可以提高背景复杂情况下的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex Background SAR Target Recognition Based on Convolution Neural Network
Deep learning networks are widely being applied to remote sensing image recognition and have achieved promising results. In this paper, we researched the influence of background with different scattering characteristics for synthetic aperture radar (SAR) target recognition based on convolutional neural network (CNN). Firstly, a two-parameter CFAR image segmentation method based on Weibull distribution was used to extracted SAR target and its shadow. And then, SAR datasets with road, farmland and grassland background environment is synthesized to analyze the CNN classifier. Experiments results show that the method by mixing training sets with different background together can improve the recognization rate when the backgrounds are complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation Analysis of Missile-borne SAR System Dual-Frequency Interferometric Performance Simulation of UAV Dupa-SAR Influence of Elevation and Orbit Interpolation on the Accuracy of R-D Location Model Approximation for the Statistics of the Optimal Polarimetric Detector in K-Wishart model An Approach for Spaceborne InSAR DEM Inversion Integrated with Stereo-SAR Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1