患者数据的数据挖掘

Junping Du, Wensheng Guo
{"title":"患者数据的数据挖掘","authors":"Junping Du, Wensheng Guo","doi":"10.1109/TENCON.2005.301294","DOIUrl":null,"url":null,"abstract":"In this paper, we use machine learning schemes IR, FOIL, InductH and C5.0 to generate decision trees and rules from the examples in the medical dataset. The aim of our study is to infer the patterns that can help doctors to identify, recognize and predict the effect of the risk factors on the long term subjective cure rates of patients who undergo colposuspension. High test classification was sometimes achieved. Our best results came when one learning method suggested the preprocessing steps to be used for another method","PeriodicalId":145719,"journal":{"name":"2005 International Conference on Neural Networks and Brain","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Mining on Patient Data\",\"authors\":\"Junping Du, Wensheng Guo\",\"doi\":\"10.1109/TENCON.2005.301294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use machine learning schemes IR, FOIL, InductH and C5.0 to generate decision trees and rules from the examples in the medical dataset. The aim of our study is to infer the patterns that can help doctors to identify, recognize and predict the effect of the risk factors on the long term subjective cure rates of patients who undergo colposuspension. High test classification was sometimes achieved. Our best results came when one learning method suggested the preprocessing steps to be used for another method\",\"PeriodicalId\":145719,\"journal\":{\"name\":\"2005 International Conference on Neural Networks and Brain\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Neural Networks and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2005.301294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Neural Networks and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2005.301294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用机器学习方案IR, FOIL, InductH和C5.0从医疗数据集中的示例中生成决策树和规则。我们研究的目的是推断出可以帮助医生识别、识别和预测危险因素对阴道暂停患者长期主观治愈率的影响的模式。有时可以实现高测试分类。当一种学习方法建议将预处理步骤用于另一种学习方法时,我们获得了最好的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Mining on Patient Data
In this paper, we use machine learning schemes IR, FOIL, InductH and C5.0 to generate decision trees and rules from the examples in the medical dataset. The aim of our study is to infer the patterns that can help doctors to identify, recognize and predict the effect of the risk factors on the long term subjective cure rates of patients who undergo colposuspension. High test classification was sometimes achieved. Our best results came when one learning method suggested the preprocessing steps to be used for another method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Levenberg-Marquardt method to the training of spiking neural networks Design and Realization of a Meaningful Digital Watermarking Algorithm Based on RBF Neural Network* Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network Connecting Brains and Robots by Computational Theories Finding Hidden Factors in Large Spatiotemporal Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1