G. Cao, I. Ahmad, Honglei Zhang, Weiyi Xie, M. Gabbouj
{"title":"平衡学习,在大数据中排名","authors":"G. Cao, I. Ahmad, Honglei Zhang, Weiyi Xie, M. Gabbouj","doi":"10.5281/ZENODO.44026","DOIUrl":null,"url":null,"abstract":"We propose a distributed learning to rank method, and demonstrate its effectiveness in web-scale image retrieval. With the increasing amount of data, it is not applicable to train a centralized ranking model for any large scale learning problems. In distributed learning, the discrepancy between the training subsets and the whole when building the models are non-trivial but overlooked in the previous work. In this paper, we firstly include a cost factor to boosting algorithms to balance the individual models toward the whole data. Then, we propose to decompose the original algorithm to multiple layers, and their aggregation forms a superior ranker which can be easily scaled up to billions of images. The extensive experiments show the proposed method outperforms the straightforward aggregation of boosting algorithms.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Balance learning to rank in big data\",\"authors\":\"G. Cao, I. Ahmad, Honglei Zhang, Weiyi Xie, M. Gabbouj\",\"doi\":\"10.5281/ZENODO.44026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a distributed learning to rank method, and demonstrate its effectiveness in web-scale image retrieval. With the increasing amount of data, it is not applicable to train a centralized ranking model for any large scale learning problems. In distributed learning, the discrepancy between the training subsets and the whole when building the models are non-trivial but overlooked in the previous work. In this paper, we firstly include a cost factor to boosting algorithms to balance the individual models toward the whole data. Then, we propose to decompose the original algorithm to multiple layers, and their aggregation forms a superior ranker which can be easily scaled up to billions of images. The extensive experiments show the proposed method outperforms the straightforward aggregation of boosting algorithms.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a distributed learning to rank method, and demonstrate its effectiveness in web-scale image retrieval. With the increasing amount of data, it is not applicable to train a centralized ranking model for any large scale learning problems. In distributed learning, the discrepancy between the training subsets and the whole when building the models are non-trivial but overlooked in the previous work. In this paper, we firstly include a cost factor to boosting algorithms to balance the individual models toward the whole data. Then, we propose to decompose the original algorithm to multiple layers, and their aggregation forms a superior ranker which can be easily scaled up to billions of images. The extensive experiments show the proposed method outperforms the straightforward aggregation of boosting algorithms.