Christoph Jansen, Radek Mackowiak, N. Hezel, Moritz Ufer, Gregor Altstadt, K. U. Barthel
{"title":"人脸图像缺失区域的重建","authors":"Christoph Jansen, Radek Mackowiak, N. Hezel, Moritz Ufer, Gregor Altstadt, K. U. Barthel","doi":"10.1109/ISM.2015.68","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to reconstruct missing areas in facial images by using a series of Restricted Boltzman Machines (RBMs). RBMs created with a low number of hidden neurons generalize well and are able to reconstruct basic structures in the missing areas. On the other hand networks with many hidden neurons tend to emphasize details, when using the reconstruction of the previous, more generalized RBMs, as their input. Since trained RBMs are fast in encoding and decoding data by design, our method is also suitable for processing video streams.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconstructing Missing Areas in Facial Images\",\"authors\":\"Christoph Jansen, Radek Mackowiak, N. Hezel, Moritz Ufer, Gregor Altstadt, K. U. Barthel\",\"doi\":\"10.1109/ISM.2015.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to reconstruct missing areas in facial images by using a series of Restricted Boltzman Machines (RBMs). RBMs created with a low number of hidden neurons generalize well and are able to reconstruct basic structures in the missing areas. On the other hand networks with many hidden neurons tend to emphasize details, when using the reconstruction of the previous, more generalized RBMs, as their input. Since trained RBMs are fast in encoding and decoding data by design, our method is also suitable for processing video streams.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present a novel approach to reconstruct missing areas in facial images by using a series of Restricted Boltzman Machines (RBMs). RBMs created with a low number of hidden neurons generalize well and are able to reconstruct basic structures in the missing areas. On the other hand networks with many hidden neurons tend to emphasize details, when using the reconstruction of the previous, more generalized RBMs, as their input. Since trained RBMs are fast in encoding and decoding data by design, our method is also suitable for processing video streams.