{"title":"STAP协方差矩阵的多元谱重构:厄米“松弛”与性能分析","authors":"Y. Abramovich, B.A. Johnson, N. Spencer","doi":"10.1109/SAM.2008.4606912","DOIUrl":null,"url":null,"abstract":"In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter co- variance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper explores a computationally advantageous \"relaxed\" maximum entropy (Burg) reconstruction technique which does not restore a strict Toeplitz-block structure, but does preserve the Burg spectrum. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset and compared with \"proper\" Toeplitz-block reconstruction.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate spectral reconstruction of STAP covariance matrices: Hermitian “relaxation” and performance analysis\",\"authors\":\"Y. Abramovich, B.A. Johnson, N. Spencer\",\"doi\":\"10.1109/SAM.2008.4606912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter co- variance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper explores a computationally advantageous \\\"relaxed\\\" maximum entropy (Burg) reconstruction technique which does not restore a strict Toeplitz-block structure, but does preserve the Burg spectrum. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset and compared with \\\"proper\\\" Toeplitz-block reconstruction.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate spectral reconstruction of STAP covariance matrices: Hermitian “relaxation” and performance analysis
In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter co- variance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper explores a computationally advantageous "relaxed" maximum entropy (Burg) reconstruction technique which does not restore a strict Toeplitz-block structure, but does preserve the Burg spectrum. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset and compared with "proper" Toeplitz-block reconstruction.