直接非线性加速度

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2022-01-01 DOI:10.1016/j.ejco.2022.100047
Aritra Dutta , El Houcine Bergou , Yunming Xiao , Marco Canini , Peter Richtárik
{"title":"直接非线性加速度","authors":"Aritra Dutta ,&nbsp;El Houcine Bergou ,&nbsp;Yunming Xiao ,&nbsp;Marco Canini ,&nbsp;Peter Richtárik","doi":"10.1016/j.ejco.2022.100047","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization acceleration techniques such as momentum play a key role in state-of-the-art machine learning algorithms. Recently, generic vector sequence extrapolation techniques, such as regularized nonlinear acceleration (RNA) of Scieur et al. <span>[22]</span>, were proposed and shown to accelerate fixed point iterations. In contrast to RNA which computes extrapolation coefficients by (approximately) setting the gradient of the objective function to zero at the extrapolated point, we propose a more direct approach, which we call <em>direct nonlinear acceleration (DNA)</em>. In DNA, we aim to minimize (an approximation of) the function value at the extrapolated point instead. We adopt a regularized approach with regularizers designed to prevent the model from entering a region in which the functional approximation is less precise. While the computational cost of DNA is comparable to that of RNA, our direct approach significantly outperforms RNA on both synthetic and real-world datasets. While the focus of this paper is on convex problems, we obtain very encouraging results in accelerating the training of neural networks.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100047"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000235/pdfft?md5=1af83969ee833bb0a8954f808f6ca4ee&pid=1-s2.0-S2192440622000235-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Direct nonlinear acceleration\",\"authors\":\"Aritra Dutta ,&nbsp;El Houcine Bergou ,&nbsp;Yunming Xiao ,&nbsp;Marco Canini ,&nbsp;Peter Richtárik\",\"doi\":\"10.1016/j.ejco.2022.100047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimization acceleration techniques such as momentum play a key role in state-of-the-art machine learning algorithms. Recently, generic vector sequence extrapolation techniques, such as regularized nonlinear acceleration (RNA) of Scieur et al. <span>[22]</span>, were proposed and shown to accelerate fixed point iterations. In contrast to RNA which computes extrapolation coefficients by (approximately) setting the gradient of the objective function to zero at the extrapolated point, we propose a more direct approach, which we call <em>direct nonlinear acceleration (DNA)</em>. In DNA, we aim to minimize (an approximation of) the function value at the extrapolated point instead. We adopt a regularized approach with regularizers designed to prevent the model from entering a region in which the functional approximation is less precise. While the computational cost of DNA is comparable to that of RNA, our direct approach significantly outperforms RNA on both synthetic and real-world datasets. While the focus of this paper is on convex problems, we obtain very encouraging results in accelerating the training of neural networks.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100047\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000235/pdfft?md5=1af83969ee833bb0a8954f808f6ca4ee&pid=1-s2.0-S2192440622000235-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

优化加速技术,如动量在最先进的机器学习算法中起着关键作用。最近,提出了通用的向量序列外推技术,如Scieur等人[22]的正则化非线性加速(RNA),并证明了它可以加速不动点迭代。RNA通过(近似地)将目标函数的梯度在外推点设置为零来计算外推系数,与此相反,我们提出了一种更直接的方法,我们称之为直接非线性加速(DNA)。在DNA中,我们的目标是最小化(近似)外推点的函数值。我们采用了一种正则化的方法,其目的是防止模型进入一个函数近似不太精确的区域。虽然DNA的计算成本与RNA相当,但我们的直接方法在合成和实际数据集上都明显优于RNA。虽然本文的重点是凸问题,但我们在加速神经网络的训练方面取得了非常令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct nonlinear acceleration

Optimization acceleration techniques such as momentum play a key role in state-of-the-art machine learning algorithms. Recently, generic vector sequence extrapolation techniques, such as regularized nonlinear acceleration (RNA) of Scieur et al. [22], were proposed and shown to accelerate fixed point iterations. In contrast to RNA which computes extrapolation coefficients by (approximately) setting the gradient of the objective function to zero at the extrapolated point, we propose a more direct approach, which we call direct nonlinear acceleration (DNA). In DNA, we aim to minimize (an approximation of) the function value at the extrapolated point instead. We adopt a regularized approach with regularizers designed to prevent the model from entering a region in which the functional approximation is less precise. While the computational cost of DNA is comparable to that of RNA, our direct approach significantly outperforms RNA on both synthetic and real-world datasets. While the focus of this paper is on convex problems, we obtain very encouraging results in accelerating the training of neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1