在存在泄漏的情况下使用过滤器进行资源分配

Ishani B. Majumdar, Shaghayegh Vosoughitabar, C. Wu, N. Mandayam, Joseph Brodie, Behzad Golparvar, Ruoqian Wang
{"title":"在存在泄漏的情况下使用过滤器进行资源分配","authors":"Ishani B. Majumdar, Shaghayegh Vosoughitabar, C. Wu, N. Mandayam, Joseph Brodie, Behzad Golparvar, Ruoqian Wang","doi":"10.1109/FNWF55208.2022.00109","DOIUrl":null,"url":null,"abstract":"The utilization of newer spectrum bands such as in 5G and 6G networks, has the potential to inadvertently cause interference to passive sensing applications operating in the adjacent portions of spectrum. One such application that has received a lot of attention has been passive weather sensing where leakage from 5G mmWave band transmissions in the 26 GHz spectrum could potentially impact the observations of passive sensors on weather prediction satellites. To mitigate problems such as the above, we present a design framework that can be employed in mm Wave networks by using filtennas (or filtering antennas) at the transmitter along with integrated resource allocation to minimize leakage into adjacent channels. Specifically, we propose an Iterative Leakage Aware Water Filling solution to allocate power and bandwidth in a system employing filtennas that guarantees performance requirements while reducing the leakage. In addition, a key contribution of this work is the characterization of the leakage function based on the order of filtennas which is incorporated in our resource allocation framework.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Allocation Using Filtennas in the Presence of Leakage\",\"authors\":\"Ishani B. Majumdar, Shaghayegh Vosoughitabar, C. Wu, N. Mandayam, Joseph Brodie, Behzad Golparvar, Ruoqian Wang\",\"doi\":\"10.1109/FNWF55208.2022.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of newer spectrum bands such as in 5G and 6G networks, has the potential to inadvertently cause interference to passive sensing applications operating in the adjacent portions of spectrum. One such application that has received a lot of attention has been passive weather sensing where leakage from 5G mmWave band transmissions in the 26 GHz spectrum could potentially impact the observations of passive sensors on weather prediction satellites. To mitigate problems such as the above, we present a design framework that can be employed in mm Wave networks by using filtennas (or filtering antennas) at the transmitter along with integrated resource allocation to minimize leakage into adjacent channels. Specifically, we propose an Iterative Leakage Aware Water Filling solution to allocate power and bandwidth in a system employing filtennas that guarantees performance requirements while reducing the leakage. In addition, a key contribution of this work is the characterization of the leakage function based on the order of filtennas which is incorporated in our resource allocation framework.\",\"PeriodicalId\":300165,\"journal\":{\"name\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FNWF55208.2022.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在5G和6G网络等较新的频谱频段中,有可能无意中对在频谱邻近部分运行的被动传感应用造成干扰。其中一个受到广泛关注的应用是被动天气传感,其中26 GHz频谱的5G毫米波频段传输的泄漏可能会影响天气预报卫星上被动传感器的观测。为了缓解上述问题,我们提出了一种设计框架,该框架可用于毫米波网络,通过在发射机上使用滤波器(或滤波天线)以及集成资源分配来最大限度地减少相邻信道的泄漏。具体而言,我们提出了一种迭代泄漏感知充水解决方案,用于在采用过滤器的系统中分配功率和带宽,以保证性能要求,同时减少泄漏。此外,这项工作的一个关键贡献是基于过滤器顺序的泄漏函数的特征,该特征被纳入我们的资源分配框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Allocation Using Filtennas in the Presence of Leakage
The utilization of newer spectrum bands such as in 5G and 6G networks, has the potential to inadvertently cause interference to passive sensing applications operating in the adjacent portions of spectrum. One such application that has received a lot of attention has been passive weather sensing where leakage from 5G mmWave band transmissions in the 26 GHz spectrum could potentially impact the observations of passive sensors on weather prediction satellites. To mitigate problems such as the above, we present a design framework that can be employed in mm Wave networks by using filtennas (or filtering antennas) at the transmitter along with integrated resource allocation to minimize leakage into adjacent channels. Specifically, we propose an Iterative Leakage Aware Water Filling solution to allocate power and bandwidth in a system employing filtennas that guarantees performance requirements while reducing the leakage. In addition, a key contribution of this work is the characterization of the leakage function based on the order of filtennas which is incorporated in our resource allocation framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs Machine Learning Aided Design of Sub-Array MIMO Antennas for CubeSats Based on 3D Printed Metallic Ridge Gap Waveguides A Supra-Disciplinary Open Framework of Knowledge to Address the Future Challenges of a Network of Feelings Resource Allocation with Vickrey-Dutch Auctioning Game for C-RAN Fronthaul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1