M. Heertjes, Maurice L. J. van de Ven, Ramidin Kamidi
{"title":"粘弹性调谐质量阻尼器运动系统的加速度-间隙前馈方案","authors":"M. Heertjes, Maurice L. J. van de Ven, Ramidin Kamidi","doi":"10.23919/ACC.2017.7963389","DOIUrl":null,"url":null,"abstract":"Bandwidth-limiting flexible modes in motion systems like the stage systems of a wafer scanner can effectively be damped by incorporating a viscoelastic tuned-mass-damper. This allows for an increase of bandwidth. The viscoelastic properties however pose a challenge on the feedforward design and thereby limit the achievable tracking performance. This is because the viscoelastic properties, which cannot be described by the simple addition of an elastic and a viscous element, induce a relaxation effect that prolongs well beyond the moment that inertial forces induced by the setpoint are being applied to the system. To cope with this problem, a tenth-order model fit from measured frequency response data that sufficiently captures the viscoelastic properties is combined with a data-based optimization approach needed to fine-tune a limited set of acceleration-snap feedforward gains. Experimental results from an industrial wafer stage system demonstrate the applicability of the approach.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acceleration-snap feedforward scheme for a motion system with viscoelastic tuned-mass-damper\",\"authors\":\"M. Heertjes, Maurice L. J. van de Ven, Ramidin Kamidi\",\"doi\":\"10.23919/ACC.2017.7963389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bandwidth-limiting flexible modes in motion systems like the stage systems of a wafer scanner can effectively be damped by incorporating a viscoelastic tuned-mass-damper. This allows for an increase of bandwidth. The viscoelastic properties however pose a challenge on the feedforward design and thereby limit the achievable tracking performance. This is because the viscoelastic properties, which cannot be described by the simple addition of an elastic and a viscous element, induce a relaxation effect that prolongs well beyond the moment that inertial forces induced by the setpoint are being applied to the system. To cope with this problem, a tenth-order model fit from measured frequency response data that sufficiently captures the viscoelastic properties is combined with a data-based optimization approach needed to fine-tune a limited set of acceleration-snap feedforward gains. Experimental results from an industrial wafer stage system demonstrate the applicability of the approach.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acceleration-snap feedforward scheme for a motion system with viscoelastic tuned-mass-damper
Bandwidth-limiting flexible modes in motion systems like the stage systems of a wafer scanner can effectively be damped by incorporating a viscoelastic tuned-mass-damper. This allows for an increase of bandwidth. The viscoelastic properties however pose a challenge on the feedforward design and thereby limit the achievable tracking performance. This is because the viscoelastic properties, which cannot be described by the simple addition of an elastic and a viscous element, induce a relaxation effect that prolongs well beyond the moment that inertial forces induced by the setpoint are being applied to the system. To cope with this problem, a tenth-order model fit from measured frequency response data that sufficiently captures the viscoelastic properties is combined with a data-based optimization approach needed to fine-tune a limited set of acceleration-snap feedforward gains. Experimental results from an industrial wafer stage system demonstrate the applicability of the approach.