P. Foroughi, V. Benetis, M. Ohadi, Yuan Zhao, J. Lawler
{"title":"低温点冷却应用的微泵的设计,测试和优化","authors":"P. Foroughi, V. Benetis, M. Ohadi, Yuan Zhao, J. Lawler","doi":"10.1109/STHERM.2005.1412201","DOIUrl":null,"url":null,"abstract":"The performance of two micropumps with different electrode designs in liquid N/sub 2/ was investigated in this study. One of the experimental challenges was developing a method for measuring the flow rate of the liquid N/sub 2/. By combining a numerical model of the non-isothermal flow of the liquid N/sub 2/ around the loop and the experimental measurements of the temperatures around the flow loop, the liquid N/sub 2/ flow rates could be determined accurately enough to compare the pumping performance of these micropumps. The first tested micropump had an electrode spacing of 20 /spl mu/m and an electrode pair spacing of 80 /spl mu/m, while the second pump had an electrode spacing of 50 /spl mu/m and electrode-pair spacing of 200 /spl mu/m. The results showed that both micropumps pumped sufficient liquid N/sub 2/ to cool a typical superconductive sensor or other low power device. For both pumps, the pumping capacities increased with increasing EHD voltage. The pump with the smaller electrode spacing generated a higher flow rate at a lower applied voltage. This pump generated flow rates as high as 10 mL/min at an applied voltage of 500 V.","PeriodicalId":256936,"journal":{"name":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Design, testing and optimization of a micropump for cryogenic spot cooling applications\",\"authors\":\"P. Foroughi, V. Benetis, M. Ohadi, Yuan Zhao, J. Lawler\",\"doi\":\"10.1109/STHERM.2005.1412201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of two micropumps with different electrode designs in liquid N/sub 2/ was investigated in this study. One of the experimental challenges was developing a method for measuring the flow rate of the liquid N/sub 2/. By combining a numerical model of the non-isothermal flow of the liquid N/sub 2/ around the loop and the experimental measurements of the temperatures around the flow loop, the liquid N/sub 2/ flow rates could be determined accurately enough to compare the pumping performance of these micropumps. The first tested micropump had an electrode spacing of 20 /spl mu/m and an electrode pair spacing of 80 /spl mu/m, while the second pump had an electrode spacing of 50 /spl mu/m and electrode-pair spacing of 200 /spl mu/m. The results showed that both micropumps pumped sufficient liquid N/sub 2/ to cool a typical superconductive sensor or other low power device. For both pumps, the pumping capacities increased with increasing EHD voltage. The pump with the smaller electrode spacing generated a higher flow rate at a lower applied voltage. This pump generated flow rates as high as 10 mL/min at an applied voltage of 500 V.\",\"PeriodicalId\":256936,\"journal\":{\"name\":\"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2005.1412201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2005.1412201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, testing and optimization of a micropump for cryogenic spot cooling applications
The performance of two micropumps with different electrode designs in liquid N/sub 2/ was investigated in this study. One of the experimental challenges was developing a method for measuring the flow rate of the liquid N/sub 2/. By combining a numerical model of the non-isothermal flow of the liquid N/sub 2/ around the loop and the experimental measurements of the temperatures around the flow loop, the liquid N/sub 2/ flow rates could be determined accurately enough to compare the pumping performance of these micropumps. The first tested micropump had an electrode spacing of 20 /spl mu/m and an electrode pair spacing of 80 /spl mu/m, while the second pump had an electrode spacing of 50 /spl mu/m and electrode-pair spacing of 200 /spl mu/m. The results showed that both micropumps pumped sufficient liquid N/sub 2/ to cool a typical superconductive sensor or other low power device. For both pumps, the pumping capacities increased with increasing EHD voltage. The pump with the smaller electrode spacing generated a higher flow rate at a lower applied voltage. This pump generated flow rates as high as 10 mL/min at an applied voltage of 500 V.