{"title":"基于分割的图像运动场估计","authors":"Yalong Jiang","doi":"10.1109/ICICIP.2015.7388222","DOIUrl":null,"url":null,"abstract":"Optical flow estimation in videos is useful in intelligent video analysis. To realize this, we need to combine segmentation algorithms with feature matching methods. In this paper, we originally combine machine learning methods (Adaboost) with feature extracting and block matching algorithms. We first use a classifier to divide an image into different regions, then match 12-by-12 blocks in these regions to corresponding ones in another image. Finally, global motion estimation and refining algorithms are proposed to correct the wrong segmentations and wrong matches, accurate matches as well as optical flow estimation can be obtained. Experiments are used to testify the usefulness.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motion field estimation in images based on segmentation\",\"authors\":\"Yalong Jiang\",\"doi\":\"10.1109/ICICIP.2015.7388222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical flow estimation in videos is useful in intelligent video analysis. To realize this, we need to combine segmentation algorithms with feature matching methods. In this paper, we originally combine machine learning methods (Adaboost) with feature extracting and block matching algorithms. We first use a classifier to divide an image into different regions, then match 12-by-12 blocks in these regions to corresponding ones in another image. Finally, global motion estimation and refining algorithms are proposed to correct the wrong segmentations and wrong matches, accurate matches as well as optical flow estimation can be obtained. Experiments are used to testify the usefulness.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频中的光流估计是智能视频分析的重要内容。为了实现这一点,我们需要将分割算法与特征匹配方法相结合。在本文中,我们最初将机器学习方法(Adaboost)与特征提取和块匹配算法相结合。我们首先使用分类器将图像划分为不同的区域,然后将这些区域中的12 × 12块与另一图像中的相应块进行匹配。最后,提出了全局运动估计和细化算法,以纠正错误分割和错误匹配,获得准确的匹配和光流估计。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion field estimation in images based on segmentation
Optical flow estimation in videos is useful in intelligent video analysis. To realize this, we need to combine segmentation algorithms with feature matching methods. In this paper, we originally combine machine learning methods (Adaboost) with feature extracting and block matching algorithms. We first use a classifier to divide an image into different regions, then match 12-by-12 blocks in these regions to corresponding ones in another image. Finally, global motion estimation and refining algorithms are proposed to correct the wrong segmentations and wrong matches, accurate matches as well as optical flow estimation can be obtained. Experiments are used to testify the usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1