T. Nakagawa, M. Miyazaki, G. Ono, R. Fujiwara, T. Norimatsu, T. Terada, A. Maeki, Y. Ogata, Shinsuke Kobayashi, N. Koshizuka, K. Sakamura
{"title":"1cc电脑使用UWB-IR进行无线传感器网络","authors":"T. Nakagawa, M. Miyazaki, G. Ono, R. Fujiwara, T. Norimatsu, T. Terada, A. Maeki, Y. Ogata, Shinsuke Kobayashi, N. Koshizuka, K. Sakamura","doi":"10.1109/ASPDAC.2008.4483982","DOIUrl":null,"url":null,"abstract":"An ultra-small, high-data-rate, low-power 1-cc computer (OCCC) with an UWB-IR (ultra-wideband impulse-radio) transceiver was developed for a wireless sensor network. Thanks to bear-chip implementation and a flexible printed circuit board, the size of the computer is only 1 cm3. To achieve 10-Mbps data rate, a middle-class 32-bit microcontroller, which has both a bus interface and a USB 2.0 controller, was selected. Low-power techniques, such as transition of microcontroller status to standby mode by using an external real-time clock during wait times, power shutdown of halted circuits, and detailed control of UWB-IR transceiver status, are applied. The effect of these low-power techniques is verified by measuring the time history of current consumption of the OCCC. It was confirmed that the OCCC can provide wireless communication at a transmission rate of 258 kbps over a distance of 30 m.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"1-cc computer using UWB-IR for wireless sensor network\",\"authors\":\"T. Nakagawa, M. Miyazaki, G. Ono, R. Fujiwara, T. Norimatsu, T. Terada, A. Maeki, Y. Ogata, Shinsuke Kobayashi, N. Koshizuka, K. Sakamura\",\"doi\":\"10.1109/ASPDAC.2008.4483982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultra-small, high-data-rate, low-power 1-cc computer (OCCC) with an UWB-IR (ultra-wideband impulse-radio) transceiver was developed for a wireless sensor network. Thanks to bear-chip implementation and a flexible printed circuit board, the size of the computer is only 1 cm3. To achieve 10-Mbps data rate, a middle-class 32-bit microcontroller, which has both a bus interface and a USB 2.0 controller, was selected. Low-power techniques, such as transition of microcontroller status to standby mode by using an external real-time clock during wait times, power shutdown of halted circuits, and detailed control of UWB-IR transceiver status, are applied. The effect of these low-power techniques is verified by measuring the time history of current consumption of the OCCC. It was confirmed that the OCCC can provide wireless communication at a transmission rate of 258 kbps over a distance of 30 m.\",\"PeriodicalId\":277556,\"journal\":{\"name\":\"2008 Asia and South Pacific Design Automation Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2008.4483982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4483982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1-cc computer using UWB-IR for wireless sensor network
An ultra-small, high-data-rate, low-power 1-cc computer (OCCC) with an UWB-IR (ultra-wideband impulse-radio) transceiver was developed for a wireless sensor network. Thanks to bear-chip implementation and a flexible printed circuit board, the size of the computer is only 1 cm3. To achieve 10-Mbps data rate, a middle-class 32-bit microcontroller, which has both a bus interface and a USB 2.0 controller, was selected. Low-power techniques, such as transition of microcontroller status to standby mode by using an external real-time clock during wait times, power shutdown of halted circuits, and detailed control of UWB-IR transceiver status, are applied. The effect of these low-power techniques is verified by measuring the time history of current consumption of the OCCC. It was confirmed that the OCCC can provide wireless communication at a transmission rate of 258 kbps over a distance of 30 m.