N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter
{"title":"一种估计正则小波密度差的近端算法","authors":"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter","doi":"10.1109/CSCI49370.2019.00127","DOIUrl":null,"url":null,"abstract":"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"428 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference\",\"authors\":\"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter\",\"doi\":\"10.1109/CSCI49370.2019.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"428 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference
Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.