Donghwa Shin, N. Chang, Yanzhi Wang, Massoud Pedram
{"title":"可重构三维光伏板结构,延长太阳能供电时间","authors":"Donghwa Shin, N. Chang, Yanzhi Wang, Massoud Pedram","doi":"10.1109/ISLPED.2015.7273526","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) power generation systems are usually accompanied by battery to bridge the gap between the generation and load demand. Solar tracking is also used to enhance the power stability and increase the amount of collected energy from the Sun. However, battery and tracking devices significantly increase the system cost, and they are subject to wear and tear, which makes maintenance-free installation challenging. In this work, we conduct the design optimization of a twofold three dimensional PV panel for solar-powered systems. With the proposed three dimensional arrangement, we extend the solar-powered time of the target application that is powered only with solar power. Experimental results show that the proposed architecture and control method extend the service time of the target system by up to 23% compared to a non-reconfigurable flat panel with the same PV panel area.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconfigurable three dimensional photovoltaic panel architecture for solar-powered time extension\",\"authors\":\"Donghwa Shin, N. Chang, Yanzhi Wang, Massoud Pedram\",\"doi\":\"10.1109/ISLPED.2015.7273526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) power generation systems are usually accompanied by battery to bridge the gap between the generation and load demand. Solar tracking is also used to enhance the power stability and increase the amount of collected energy from the Sun. However, battery and tracking devices significantly increase the system cost, and they are subject to wear and tear, which makes maintenance-free installation challenging. In this work, we conduct the design optimization of a twofold three dimensional PV panel for solar-powered systems. With the proposed three dimensional arrangement, we extend the solar-powered time of the target application that is powered only with solar power. Experimental results show that the proposed architecture and control method extend the service time of the target system by up to 23% compared to a non-reconfigurable flat panel with the same PV panel area.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable three dimensional photovoltaic panel architecture for solar-powered time extension
Photovoltaic (PV) power generation systems are usually accompanied by battery to bridge the gap between the generation and load demand. Solar tracking is also used to enhance the power stability and increase the amount of collected energy from the Sun. However, battery and tracking devices significantly increase the system cost, and they are subject to wear and tear, which makes maintenance-free installation challenging. In this work, we conduct the design optimization of a twofold three dimensional PV panel for solar-powered systems. With the proposed three dimensional arrangement, we extend the solar-powered time of the target application that is powered only with solar power. Experimental results show that the proposed architecture and control method extend the service time of the target system by up to 23% compared to a non-reconfigurable flat panel with the same PV panel area.