嵌入式软件开发项目中使用自组织映射的工作量预测模型

K. Iwata, Toyoshiro Nakashima, Yoshiyuki Anan, N. Ishii
{"title":"嵌入式软件开发项目中使用自组织映射的工作量预测模型","authors":"K. Iwata, Toyoshiro Nakashima, Yoshiyuki Anan, N. Ishii","doi":"10.1109/ICTAI.2011.30","DOIUrl":null,"url":null,"abstract":"In this paper, we create effort prediction models using self-organizing maps (SOMs) for embedded software development projects. SOMs are a type of artificial neural networks that rely on unsupervised learning. They produce a low-dimensional, discretized representation of the input space of training samples, these representations are called maps. SOMs are useful for visualizing low-dimensional views of high-dimensional data a multidimensional scaling technique. The advantages of using SOMs for statistical applications are as follows: (1) enabling reasonable inferences to be made from incomplete information via association and recollection, (2) visualizing data, (3) summarizing large-scale data, and (4) creating nonlinear models. We focus on the first advantage to create effort prediction models. To verify our approach, we perform an evaluation experiment that compares SOM models to feed forward artificial neural network (FANN) models using Welch's t test. The results of the comparison indicate that SOM models are more accurate than FANN models for the mean of absolute errors when predicting the amount of effort, because mean errors of the SOM are statistically significantly lower.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effort Prediction Models Using Self-Organizing Maps for Embedded Software Development Projects\",\"authors\":\"K. Iwata, Toyoshiro Nakashima, Yoshiyuki Anan, N. Ishii\",\"doi\":\"10.1109/ICTAI.2011.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we create effort prediction models using self-organizing maps (SOMs) for embedded software development projects. SOMs are a type of artificial neural networks that rely on unsupervised learning. They produce a low-dimensional, discretized representation of the input space of training samples, these representations are called maps. SOMs are useful for visualizing low-dimensional views of high-dimensional data a multidimensional scaling technique. The advantages of using SOMs for statistical applications are as follows: (1) enabling reasonable inferences to be made from incomplete information via association and recollection, (2) visualizing data, (3) summarizing large-scale data, and (4) creating nonlinear models. We focus on the first advantage to create effort prediction models. To verify our approach, we perform an evaluation experiment that compares SOM models to feed forward artificial neural network (FANN) models using Welch's t test. The results of the comparison indicate that SOM models are more accurate than FANN models for the mean of absolute errors when predicting the amount of effort, because mean errors of the SOM are statistically significantly lower.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们使用自组织映射(SOMs)为嵌入式软件开发项目创建了工作量预测模型。SOMs是一种依赖于无监督学习的人工神经网络。它们产生训练样本输入空间的低维离散表示,这些表示称为映射。som对于可视化高维数据的低维视图非常有用,这是一种多维缩放技术。在统计应用中使用SOMs的优点如下:(1)能够通过联想和回忆从不完整的信息中做出合理的推断;(2)数据可视化;(3)汇总大规模数据;(4)创建非线性模型。我们专注于第一个优势来创建努力预测模型。为了验证我们的方法,我们进行了一个评估实验,使用Welch's t检验将SOM模型与前馈人工神经网络(FANN)模型进行比较。对比结果表明,SOM模型在预测工作量时的绝对误差均值比FANN模型更准确,因为SOM模型的平均误差在统计学上显著低于FANN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effort Prediction Models Using Self-Organizing Maps for Embedded Software Development Projects
In this paper, we create effort prediction models using self-organizing maps (SOMs) for embedded software development projects. SOMs are a type of artificial neural networks that rely on unsupervised learning. They produce a low-dimensional, discretized representation of the input space of training samples, these representations are called maps. SOMs are useful for visualizing low-dimensional views of high-dimensional data a multidimensional scaling technique. The advantages of using SOMs for statistical applications are as follows: (1) enabling reasonable inferences to be made from incomplete information via association and recollection, (2) visualizing data, (3) summarizing large-scale data, and (4) creating nonlinear models. We focus on the first advantage to create effort prediction models. To verify our approach, we perform an evaluation experiment that compares SOM models to feed forward artificial neural network (FANN) models using Welch's t test. The results of the comparison indicate that SOM models are more accurate than FANN models for the mean of absolute errors when predicting the amount of effort, because mean errors of the SOM are statistically significantly lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1