movpe生长体稀氮化物和双化物量子阱异质结构的时间分辨PL和TEM研究

Y. Sin, Z. Lingley, M. Peterson, M. Brodie, S. Moss, Tae Wan Kim, Honghyuk Kim, Y. Guan, K. Forghani, L. Mawst, T. Kuech
{"title":"movpe生长体稀氮化物和双化物量子阱异质结构的时间分辨PL和TEM研究","authors":"Y. Sin, Z. Lingley, M. Peterson, M. Brodie, S. Moss, Tae Wan Kim, Honghyuk Kim, Y. Guan, K. Forghani, L. Mawst, T. Kuech","doi":"10.1117/12.2076785","DOIUrl":null,"url":null,"abstract":"Among several approaches proposed to achieve high-efficiency III-V multi-junction solar cells, the most promising approach is to incorporate a bottom junction consisting of a 1 – 1.25 eV material. In particular, several research groups have studied MBE- and MOVPE-grown 1 – 1.25 eV bulk (In)GaAsN(Sb) dilute nitride lattice matched to GaAs substrates, but it is a challenge to grow dilute nitrides without introducing a number of localized states or defects. Localized states originating from random distributions of nitrogen sites in dilute nitrides behave as highly efficient traps, leading to short minority carrier lifetimes. As our group previously reported, carrier dynamics studies are indispensable in the optimization of dilute nitride materials growth to achieve improved solar cell performance. Also, bismide QW heterostructures have recently received a great deal of attention for applications in solar cells and semiconductor lasers because theoretical studies have predicted reduction in nonradiative recombination in Bicontaining materials. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk (In)GaAsN(Sb) materials nominally lattice matched to GaAs substrates. Compared to our previous samples, our present samples grown using different metalorganic precursors at higher growth temperatures showed a significantly less background C doping density. Carrier lifetimes were measured from such dilute nitride samples with low C doping density at various temperatures between 10K and RT. We also performed preliminary TR-PL measurements on MOVPE-grown bismide QW heterostructures at low temperatures. Carrier lifetimes were measured from as-grown and annealed bismide QW structures consisting of GaAsBi(P) wells and GaAsP barriers. Lastly, TEM cross sections were prepared from both dilute nitride and bismide samples for defect and composition analysis using a high resolution TEM.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-resolved PL and TEM studies of MOVPE-grown bulk dilute nitride and bismide quantum well heterostructure\",\"authors\":\"Y. Sin, Z. Lingley, M. Peterson, M. Brodie, S. Moss, Tae Wan Kim, Honghyuk Kim, Y. Guan, K. Forghani, L. Mawst, T. Kuech\",\"doi\":\"10.1117/12.2076785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among several approaches proposed to achieve high-efficiency III-V multi-junction solar cells, the most promising approach is to incorporate a bottom junction consisting of a 1 – 1.25 eV material. In particular, several research groups have studied MBE- and MOVPE-grown 1 – 1.25 eV bulk (In)GaAsN(Sb) dilute nitride lattice matched to GaAs substrates, but it is a challenge to grow dilute nitrides without introducing a number of localized states or defects. Localized states originating from random distributions of nitrogen sites in dilute nitrides behave as highly efficient traps, leading to short minority carrier lifetimes. As our group previously reported, carrier dynamics studies are indispensable in the optimization of dilute nitride materials growth to achieve improved solar cell performance. Also, bismide QW heterostructures have recently received a great deal of attention for applications in solar cells and semiconductor lasers because theoretical studies have predicted reduction in nonradiative recombination in Bicontaining materials. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk (In)GaAsN(Sb) materials nominally lattice matched to GaAs substrates. Compared to our previous samples, our present samples grown using different metalorganic precursors at higher growth temperatures showed a significantly less background C doping density. Carrier lifetimes were measured from such dilute nitride samples with low C doping density at various temperatures between 10K and RT. We also performed preliminary TR-PL measurements on MOVPE-grown bismide QW heterostructures at low temperatures. Carrier lifetimes were measured from as-grown and annealed bismide QW structures consisting of GaAsBi(P) wells and GaAsP barriers. Lastly, TEM cross sections were prepared from both dilute nitride and bismide samples for defect and composition analysis using a high resolution TEM.\",\"PeriodicalId\":432115,\"journal\":{\"name\":\"Photonics West - Optoelectronic Materials and Devices\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Optoelectronic Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2076785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2076785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实现高效率III-V型多结太阳能电池的几种方法中,最有希望的方法是结合由1 - 1.25 eV材料组成的底部结。特别是,一些研究小组已经研究了MBE和movpe生长的与GaAs衬底匹配的1 - 1.25 eV大块(In)GaAsN(Sb)稀氮化物晶格,但在不引入许多局域态或缺陷的情况下生长稀氮化物是一个挑战。源自稀氮化物中氮位随机分布的局域态表现为高效陷阱,导致少数载流子寿命短。正如我们小组之前报道的那样,载流子动力学研究是优化稀氮材料生长以提高太阳能电池性能不可或缺的。此外,铋量子阱异质结构最近在太阳能电池和半导体激光器中的应用受到了极大的关注,因为理论研究已经预测了含铋材料中非辐射复合的减少。在本研究中,我们采用时间分辨光致发光(TR-PL)技术研究了movpe生长的大块(in)GaAsN(Sb)材料中的载流子动力学,这些材料名义上与GaAs衬底晶格匹配。与我们以前的样品相比,我们现在的样品使用不同的金属有机前体在更高的生长温度下生长,显示出明显降低的背景C掺杂密度。在10K和rt之间的不同温度下,我们测量了这些低碳掺杂密度的稀氮化物样品的载流子寿命。我们还在低温下对movpe生长的双化物QW异质结构进行了初步的TR-PL测量。通过由GaAsBi(P)井和GaAsP势垒组成的生长和退火双化物QW结构测量载流子寿命。最后,制备了稀氮和双化物样品的透射电镜横截面,利用高分辨率透射电镜对其缺陷和成分进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-resolved PL and TEM studies of MOVPE-grown bulk dilute nitride and bismide quantum well heterostructure
Among several approaches proposed to achieve high-efficiency III-V multi-junction solar cells, the most promising approach is to incorporate a bottom junction consisting of a 1 – 1.25 eV material. In particular, several research groups have studied MBE- and MOVPE-grown 1 – 1.25 eV bulk (In)GaAsN(Sb) dilute nitride lattice matched to GaAs substrates, but it is a challenge to grow dilute nitrides without introducing a number of localized states or defects. Localized states originating from random distributions of nitrogen sites in dilute nitrides behave as highly efficient traps, leading to short minority carrier lifetimes. As our group previously reported, carrier dynamics studies are indispensable in the optimization of dilute nitride materials growth to achieve improved solar cell performance. Also, bismide QW heterostructures have recently received a great deal of attention for applications in solar cells and semiconductor lasers because theoretical studies have predicted reduction in nonradiative recombination in Bicontaining materials. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk (In)GaAsN(Sb) materials nominally lattice matched to GaAs substrates. Compared to our previous samples, our present samples grown using different metalorganic precursors at higher growth temperatures showed a significantly less background C doping density. Carrier lifetimes were measured from such dilute nitride samples with low C doping density at various temperatures between 10K and RT. We also performed preliminary TR-PL measurements on MOVPE-grown bismide QW heterostructures at low temperatures. Carrier lifetimes were measured from as-grown and annealed bismide QW structures consisting of GaAsBi(P) wells and GaAsP barriers. Lastly, TEM cross sections were prepared from both dilute nitride and bismide samples for defect and composition analysis using a high resolution TEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and performance of multicore fiber optimized towards communications and sensing applications Gain equalization of FM-EDFA by optimizing ring doping and mode content of the pump with a genetic algorithm Novel method of generation of linear frequency modulation optical waveforms with swept range of over 200 GHz for lidar systems Flexible waveguide enabled single-channel terahertz endoscopic system InGaN LEDs prepared on β-Ga2O3 (-201) substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1