基于噪声观测的贝叶斯优化的可选获取函数

Jia-yi Hu, Yuze Jiang, Jiayu Li, Tianyue Yuan
{"title":"基于噪声观测的贝叶斯优化的可选获取函数","authors":"Jia-yi Hu, Yuze Jiang, Jiayu Li, Tianyue Yuan","doi":"10.1145/3501774.3501791","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a variety of acquisition functions currently used in Bayesian optimization. Besides the traditional acquisition functions like Probability Improvement (PI), Expected Improvement (EI) and Gaussian Process-Upper Confidence Bound (GP-UCB), we also present some modified or improved EI and PI methods, Knowledge Gradient (KG) and Predictive Entropy Search (PES) methods to explore ways to reduce the impact of observational noise. In experimental part, we choose a benchmark function and use Bayesian optimization algorithm to find its global minimum. We add different scales of noise in particular following the Gaussian distribution to the benchmark function, to compare the performance of BO algorithm using different acquisition functions. Combined with the experimental results, we also present a discussion of the pros and cons of using those acquisition functions. Hope this can provide some experience and suggestions for choosing acquisition functions in terms of noisy observation.","PeriodicalId":255059,"journal":{"name":"Proceedings of the 2021 European Symposium on Software Engineering","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alternative Acquisition Functions of Bayesian Optimization in terms of Noisy Observation\",\"authors\":\"Jia-yi Hu, Yuze Jiang, Jiayu Li, Tianyue Yuan\",\"doi\":\"10.1145/3501774.3501791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a variety of acquisition functions currently used in Bayesian optimization. Besides the traditional acquisition functions like Probability Improvement (PI), Expected Improvement (EI) and Gaussian Process-Upper Confidence Bound (GP-UCB), we also present some modified or improved EI and PI methods, Knowledge Gradient (KG) and Predictive Entropy Search (PES) methods to explore ways to reduce the impact of observational noise. In experimental part, we choose a benchmark function and use Bayesian optimization algorithm to find its global minimum. We add different scales of noise in particular following the Gaussian distribution to the benchmark function, to compare the performance of BO algorithm using different acquisition functions. Combined with the experimental results, we also present a discussion of the pros and cons of using those acquisition functions. Hope this can provide some experience and suggestions for choosing acquisition functions in terms of noisy observation.\",\"PeriodicalId\":255059,\"journal\":{\"name\":\"Proceedings of the 2021 European Symposium on Software Engineering\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 European Symposium on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3501774.3501791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 European Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501774.3501791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们介绍了目前贝叶斯优化中使用的各种采集函数。除了传统的概率改进(PI)、期望改进(EI)和高斯过程上置信度(GP-UCB)等获取函数外,我们还提出了改进的EI和PI方法、知识梯度(KG)和预测熵搜索(PES)方法来探索降低观测噪声影响的方法。在实验部分,我们选择一个基准函数,并使用贝叶斯优化算法找到它的全局最小值。我们在基准函数中加入了不同尺度的噪声,特别是遵循高斯分布的噪声,以比较使用不同采集函数的BO算法的性能。结合实验结果,我们还讨论了使用这些采集函数的利弊。希望能为噪声观测中采集函数的选择提供一些经验和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alternative Acquisition Functions of Bayesian Optimization in terms of Noisy Observation
In this paper, we introduce a variety of acquisition functions currently used in Bayesian optimization. Besides the traditional acquisition functions like Probability Improvement (PI), Expected Improvement (EI) and Gaussian Process-Upper Confidence Bound (GP-UCB), we also present some modified or improved EI and PI methods, Knowledge Gradient (KG) and Predictive Entropy Search (PES) methods to explore ways to reduce the impact of observational noise. In experimental part, we choose a benchmark function and use Bayesian optimization algorithm to find its global minimum. We add different scales of noise in particular following the Gaussian distribution to the benchmark function, to compare the performance of BO algorithm using different acquisition functions. Combined with the experimental results, we also present a discussion of the pros and cons of using those acquisition functions. Hope this can provide some experience and suggestions for choosing acquisition functions in terms of noisy observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Satisfaction in Software Development Projects A Lightweight Development of Outbreak Prevention Strategies Built on Formal Methods and xDSLs An Exploratory Teaching Proposal of Greek History Independence Events based on STEAM Epistemology, Educational Robotics and Smart Learning Technologies Merging Live Video Feeds for Remote Monitoring of a Mining Machine Incorporating energy efficiency measurement into CI\CD pipeline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1