基于骨骼的多个RGB-D kinect摄像头的连续外部校准

Kevin Desai, B. Prabhakaran, S. Raghuraman
{"title":"基于骨骼的多个RGB-D kinect摄像头的连续外部校准","authors":"Kevin Desai, B. Prabhakaran, S. Raghuraman","doi":"10.1145/3204949.3204969","DOIUrl":null,"url":null,"abstract":"Applications involving 3D scanning and reconstruction & 3D Tele-immersion provide an immersive experience by capturing a scene using multiple RGB-D cameras, such as Kinect. Prior knowledge of intrinsic calibration of each of the cameras, and extrinsic calibration between cameras, is essential to reconstruct the captured data. The intrinsic calibration for a given camera rarely ever changes, so only needs to be estimated once. However, the extrinsic calibration between cameras can change, even with a small nudge to the camera. Calibration accuracy depends on sensor noise, features used, sampling method, etc., resulting in the need for iterative calibration to achieve good calibration. In this paper, we introduce a skeleton based approach to calibrate multiple RGB-D Kinect cameras in a closed setup, automatically without any intervention, within a few seconds. The method uses only the person present in the scene to calibrate, removing the need for manually inserting, detecting and extracting other objects like plane, checker-board, sphere, etc. 3D joints of the extracted skeleton are used as correspondence points between cameras, after undergoing accuracy and orientation checks. Temporal, spatial, and motion constraints are applied during the point selection strategy. Our calibration error checking is inexpensive in terms of computational cost and time and hence is continuously run in the background. Automatic re-calibration of the cameras can be performed when the calibration error goes beyond a threshold due to any possible camera movement. Evaluations show that the method can provide fast, accurate and continuous calibration, as long as a human is moving around in the captured scene.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Skeleton-based continuous extrinsic calibration of multiple RGB-D kinect cameras\",\"authors\":\"Kevin Desai, B. Prabhakaran, S. Raghuraman\",\"doi\":\"10.1145/3204949.3204969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications involving 3D scanning and reconstruction & 3D Tele-immersion provide an immersive experience by capturing a scene using multiple RGB-D cameras, such as Kinect. Prior knowledge of intrinsic calibration of each of the cameras, and extrinsic calibration between cameras, is essential to reconstruct the captured data. The intrinsic calibration for a given camera rarely ever changes, so only needs to be estimated once. However, the extrinsic calibration between cameras can change, even with a small nudge to the camera. Calibration accuracy depends on sensor noise, features used, sampling method, etc., resulting in the need for iterative calibration to achieve good calibration. In this paper, we introduce a skeleton based approach to calibrate multiple RGB-D Kinect cameras in a closed setup, automatically without any intervention, within a few seconds. The method uses only the person present in the scene to calibrate, removing the need for manually inserting, detecting and extracting other objects like plane, checker-board, sphere, etc. 3D joints of the extracted skeleton are used as correspondence points between cameras, after undergoing accuracy and orientation checks. Temporal, spatial, and motion constraints are applied during the point selection strategy. Our calibration error checking is inexpensive in terms of computational cost and time and hence is continuously run in the background. Automatic re-calibration of the cameras can be performed when the calibration error goes beyond a threshold due to any possible camera movement. Evaluations show that the method can provide fast, accurate and continuous calibration, as long as a human is moving around in the captured scene.\",\"PeriodicalId\":141196,\"journal\":{\"name\":\"Proceedings of the 9th ACM Multimedia Systems Conference\",\"volume\":\"354 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3204949.3204969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3204969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

涉及3D扫描和重建和3D远程沉浸的应用程序通过使用多个RGB-D相机(如Kinect)捕捉场景,提供身临其境的体验。对于重建捕获的数据,每个摄像机的固有校准和摄像机之间的外部校准的先验知识是必不可少的。给定相机的固有校准很少改变,所以只需要估计一次。然而,相机之间的外部校准可能会改变,即使对相机进行轻微的推动。校准精度取决于传感器噪声、使用的特征、采样方法等,导致需要迭代校准才能实现良好的校准。在本文中,我们介绍了一种基于骨架的方法来在封闭设置中自动校准多个RGB-D Kinect摄像机,无需任何干预,只需几秒钟。该方法仅使用场景中存在的人进行校准,无需手动插入,检测和提取平面,棋盘,球体等其他物体。提取的骨架的3D关节作为相机之间的对应点,经过精度和方向检查。在点选择策略中应用时间、空间和运动约束。我们的校准误差检查在计算成本和时间方面是廉价的,因此在后台连续运行。当由于任何可能的相机移动而导致校准误差超过阈值时,可以执行相机的自动重新校准。评估表明,该方法可以提供快速、准确和连续的校准,只要一个人在捕获的场景中走动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skeleton-based continuous extrinsic calibration of multiple RGB-D kinect cameras
Applications involving 3D scanning and reconstruction & 3D Tele-immersion provide an immersive experience by capturing a scene using multiple RGB-D cameras, such as Kinect. Prior knowledge of intrinsic calibration of each of the cameras, and extrinsic calibration between cameras, is essential to reconstruct the captured data. The intrinsic calibration for a given camera rarely ever changes, so only needs to be estimated once. However, the extrinsic calibration between cameras can change, even with a small nudge to the camera. Calibration accuracy depends on sensor noise, features used, sampling method, etc., resulting in the need for iterative calibration to achieve good calibration. In this paper, we introduce a skeleton based approach to calibrate multiple RGB-D Kinect cameras in a closed setup, automatically without any intervention, within a few seconds. The method uses only the person present in the scene to calibrate, removing the need for manually inserting, detecting and extracting other objects like plane, checker-board, sphere, etc. 3D joints of the extracted skeleton are used as correspondence points between cameras, after undergoing accuracy and orientation checks. Temporal, spatial, and motion constraints are applied during the point selection strategy. Our calibration error checking is inexpensive in terms of computational cost and time and hence is continuously run in the background. Automatic re-calibration of the cameras can be performed when the calibration error goes beyond a threshold due to any possible camera movement. Evaluations show that the method can provide fast, accurate and continuous calibration, as long as a human is moving around in the captured scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1