Zhixiang Liu, E. Sha, Xianzhang Chen, Weiwen Jiang, Qingfeng Zhuge
{"title":"NUMA机器上内存文件系统的性能优化","authors":"Zhixiang Liu, E. Sha, Xianzhang Chen, Weiwen Jiang, Qingfeng Zhuge","doi":"10.1109/PDCAT.2016.018","DOIUrl":null,"url":null,"abstract":"The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Optimization for In-Memory File Systems on NUMA Machines\",\"authors\":\"Zhixiang Liu, E. Sha, Xianzhang Chen, Weiwen Jiang, Qingfeng Zhuge\",\"doi\":\"10.1109/PDCAT.2016.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.\",\"PeriodicalId\":203925,\"journal\":{\"name\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2016.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Optimization for In-Memory File Systems on NUMA Machines
The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.