mpsoc的轻量级安全机制

A. Sant'Ana, Henrique Martins Medina, Kevin Boucinha Fiorentin, F. Moraes
{"title":"mpsoc的轻量级安全机制","authors":"A. Sant'Ana, Henrique Martins Medina, Kevin Boucinha Fiorentin, F. Moraes","doi":"10.1145/3338852.3339876","DOIUrl":null,"url":null,"abstract":"Computational systems tend to adopt parallel architectures, by using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vulnerable to software and hardware attacks, as infected applications and Hardware Trojans respectively. These attacks may have the purpose to gain access to sensitive data, interrupt a given application or even damage the system physically. The literature presents countermeasures using dedicated routing algorithms, cryptography, firewalls and secure zones. These approaches present a significant hardware cost (firewalls, cryptography) or are too restrictive regarding the use of MPSoC resources (secure zones). The goal of this paper is to present lightweight security mechanisms for MPSoCs, using four techniques: spatial isolation of applications; dedicated network to send sensitive data; traffic blocking filter; lightweight cryptography. These mechanisms protect the MPSoC against the most common software attacks, as Denial of Service (DoS) and spoofing (man-in-the-middle), and ensures confidentiality and integrity to applications. Results present low area and latency overhead, as well as the effectiveness of using the mechanisms to block malicious traffic.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lightweight Security Mechanisms for MPSoCs\",\"authors\":\"A. Sant'Ana, Henrique Martins Medina, Kevin Boucinha Fiorentin, F. Moraes\",\"doi\":\"10.1145/3338852.3339876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational systems tend to adopt parallel architectures, by using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vulnerable to software and hardware attacks, as infected applications and Hardware Trojans respectively. These attacks may have the purpose to gain access to sensitive data, interrupt a given application or even damage the system physically. The literature presents countermeasures using dedicated routing algorithms, cryptography, firewalls and secure zones. These approaches present a significant hardware cost (firewalls, cryptography) or are too restrictive regarding the use of MPSoC resources (secure zones). The goal of this paper is to present lightweight security mechanisms for MPSoCs, using four techniques: spatial isolation of applications; dedicated network to send sensitive data; traffic blocking filter; lightweight cryptography. These mechanisms protect the MPSoC against the most common software attacks, as Denial of Service (DoS) and spoofing (man-in-the-middle), and ensures confidentiality and integrity to applications. Results present low area and latency overhead, as well as the effectiveness of using the mechanisms to block malicious traffic.\",\"PeriodicalId\":184401,\"journal\":{\"name\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"13 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338852.3339876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过使用多处理器片上系统(mpsoc),计算系统倾向于采用并行架构。mpsoc容易受到软件和硬件攻击,分别是受感染的应用程序和硬件木马。这些攻击的目的可能是获取对敏感数据的访问权限,中断给定的应用程序,甚至在物理上破坏系统。文献提出对策使用专用路由算法,密码学,防火墙和安全区域。这些方法带来了巨大的硬件成本(防火墙、加密),或者对MPSoC资源(安全区)的使用限制太大。本文的目标是介绍mpsoc的轻量级安全机制,使用四种技术:应用程序的空间隔离;专用网络发送敏感数据;流量阻断过滤器;轻量级加密。这些机制保护MPSoC免受最常见的软件攻击,如拒绝服务(DoS)和欺骗(中间人),并确保应用程序的机密性和完整性。结果显示低面积和延迟开销,以及使用该机制阻止恶意流量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight Security Mechanisms for MPSoCs
Computational systems tend to adopt parallel architectures, by using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vulnerable to software and hardware attacks, as infected applications and Hardware Trojans respectively. These attacks may have the purpose to gain access to sensitive data, interrupt a given application or even damage the system physically. The literature presents countermeasures using dedicated routing algorithms, cryptography, firewalls and secure zones. These approaches present a significant hardware cost (firewalls, cryptography) or are too restrictive regarding the use of MPSoC resources (secure zones). The goal of this paper is to present lightweight security mechanisms for MPSoCs, using four techniques: spatial isolation of applications; dedicated network to send sensitive data; traffic blocking filter; lightweight cryptography. These mechanisms protect the MPSoC against the most common software attacks, as Denial of Service (DoS) and spoofing (man-in-the-middle), and ensures confidentiality and integrity to applications. Results present low area and latency overhead, as well as the effectiveness of using the mechanisms to block malicious traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Innovative Strategy to Reduce Die Area of Robust OTA by using iMTGSPICE and Diamond Layout Style for MOSFETs PHICC: An Error Correction Code For Memory Devices Behavioral Modeling of a Control Module for an Energy-investing Piezoelectric Harvester An FPGA-Based Evaluation Platform for Energy Harvesting Embedded Systems Exploring Tabu Search Based Algorithms for Mapping and Placement in NoC-based Reconfigurable Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1