专利文件自动分类中处理方法的绩效比较

B. Nugroho, Asep Denih
{"title":"专利文件自动分类中处理方法的绩效比较","authors":"B. Nugroho, Asep Denih","doi":"10.33751/komputasi.v17i2.2148","DOIUrl":null,"url":null,"abstract":"This paper presents a performance analysis and comparison of several pre-processing methods used in automatic patent classification with graph kernels for Support Vector Machine (SVM). The pre-processing methods are based on the data transform techniques, namely data scaling, data centering, data standardization, data normalization, the Box-Cox transform and the Yeo-Johnson transform. The automatic patent classification is designed to classify an input of patent citation graphs into one of 10 possible classes of the International Patent Classification (IPC). The input is taken with various background conditions. The experiments showed that the best result is achieved when the pre-processing method is data normalization, achieving a classification accuracy of up to 85.33.15% for the KEHL and 93.80% for the KVHL. In contrast, for the KEHG, the preprocessing method application decreased the accuracy.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"93 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERBANDINGAN KINERJA METODE PRA-PEMROSESAN DALAM PENGKLASIFIKASIAN OTOMATIS DOKUMEN PATEN\",\"authors\":\"B. Nugroho, Asep Denih\",\"doi\":\"10.33751/komputasi.v17i2.2148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance analysis and comparison of several pre-processing methods used in automatic patent classification with graph kernels for Support Vector Machine (SVM). The pre-processing methods are based on the data transform techniques, namely data scaling, data centering, data standardization, data normalization, the Box-Cox transform and the Yeo-Johnson transform. The automatic patent classification is designed to classify an input of patent citation graphs into one of 10 possible classes of the International Patent Classification (IPC). The input is taken with various background conditions. The experiments showed that the best result is achieved when the pre-processing method is data normalization, achieving a classification accuracy of up to 85.33.15% for the KEHL and 93.80% for the KVHL. In contrast, for the KEHG, the preprocessing method application decreased the accuracy.\",\"PeriodicalId\":339673,\"journal\":{\"name\":\"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika\",\"volume\":\"93 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33751/komputasi.v17i2.2148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33751/komputasi.v17i2.2148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于图核的支持向量机专利自动分类的几种预处理方法进行了性能分析和比较。预处理方法基于数据变换技术,即数据缩放、数据定心、数据标准化、数据归一化、Box-Cox变换和Yeo-Johnson变换。专利自动分类旨在将专利引文图的输入分类为国际专利分类(IPC)的10个可能类别之一。输入是在各种背景条件下进行的。实验表明,当预处理方法为数据归一化时,效果最好,KEHL的分类准确率高达85.33.15%,KVHL的分类准确率高达93.80%。相比之下,对于KEHG,预处理方法的应用降低了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PERBANDINGAN KINERJA METODE PRA-PEMROSESAN DALAM PENGKLASIFIKASIAN OTOMATIS DOKUMEN PATEN
This paper presents a performance analysis and comparison of several pre-processing methods used in automatic patent classification with graph kernels for Support Vector Machine (SVM). The pre-processing methods are based on the data transform techniques, namely data scaling, data centering, data standardization, data normalization, the Box-Cox transform and the Yeo-Johnson transform. The automatic patent classification is designed to classify an input of patent citation graphs into one of 10 possible classes of the International Patent Classification (IPC). The input is taken with various background conditions. The experiments showed that the best result is achieved when the pre-processing method is data normalization, achieving a classification accuracy of up to 85.33.15% for the KEHL and 93.80% for the KVHL. In contrast, for the KEHG, the preprocessing method application decreased the accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Encryption in Digital Images using the Zhang LSB Imange Method Linear Kernel Optimization of Support Vector Machine Algorithm on Online Marketplace Sentiment Analysis Spatial Clustering Using Generalized LASSO on the Gender and Human Development Index in Papua Island in 2022 Application of the Naive Bayes Classifier Method and Fuzzy Analytical Hierarchy Process in Determining Books Eligible for Publishing Chaos CSPRNG Design As a Key in Symmetric Cryptography Using Logarithmic Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1