使用堆叠机器学习模型预测外汇价格走势

Thanapol Kurujitkosol, Akkharawoot Takhom, Sasiporn Usanavasin
{"title":"使用堆叠机器学习模型预测外汇价格走势","authors":"Thanapol Kurujitkosol, Akkharawoot Takhom, Sasiporn Usanavasin","doi":"10.1109/iSAI-NLP56921.2022.9960245","DOIUrl":null,"url":null,"abstract":"Forex is an attractive choice for investors who admire any making profit challenges in the fluctuating market. But on the other hand, it means investors can lose money at the same time. Many investors look for ways to reduce the risks by finding price movement prediction tools. Therefore, this paper proposes the Stacking Machine Learning Models to predict the future price direction to help investors to decide and plan strategies. We experimented with comparing baseline models to evaluate the accuracy performance. In addition, we improve the accuracy performance using Technical Analysis and Fibonacci Retracements to gain an accuracy of 90%.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forex Price Movement Prediction Using Stacking Machine Learning Models\",\"authors\":\"Thanapol Kurujitkosol, Akkharawoot Takhom, Sasiporn Usanavasin\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forex is an attractive choice for investors who admire any making profit challenges in the fluctuating market. But on the other hand, it means investors can lose money at the same time. Many investors look for ways to reduce the risks by finding price movement prediction tools. Therefore, this paper proposes the Stacking Machine Learning Models to predict the future price direction to help investors to decide and plan strategies. We experimented with comparing baseline models to evaluate the accuracy performance. In addition, we improve the accuracy performance using Technical Analysis and Fibonacci Retracements to gain an accuracy of 90%.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于那些喜欢在波动的市场中赚取利润的投资者来说,外汇是一个有吸引力的选择。但另一方面,这也意味着投资者可能同时赔钱。许多投资者通过寻找价格走势预测工具来寻找降低风险的方法。因此,本文提出了堆叠机器学习模型来预测未来的价格方向,以帮助投资者决策和规划策略。我们通过比较基线模型来评估精度性能。此外,我们使用技术分析和斐波那契回调来提高准确度性能,以获得90%的准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forex Price Movement Prediction Using Stacking Machine Learning Models
Forex is an attractive choice for investors who admire any making profit challenges in the fluctuating market. But on the other hand, it means investors can lose money at the same time. Many investors look for ways to reduce the risks by finding price movement prediction tools. Therefore, this paper proposes the Stacking Machine Learning Models to predict the future price direction to help investors to decide and plan strategies. We experimented with comparing baseline models to evaluate the accuracy performance. In addition, we improve the accuracy performance using Technical Analysis and Fibonacci Retracements to gain an accuracy of 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1