户外环境的高效分散协同映射

Luis F. Contreras-Samame, Olivier Kermorgant, P. Martinet
{"title":"户外环境的高效分散协同映射","authors":"Luis F. Contreras-Samame, Olivier Kermorgant, P. Martinet","doi":"10.1109/IRC.2018.00017","DOIUrl":null,"url":null,"abstract":"An efficient mapping in mobile robotics may involve the participation of several agents. In this context, this article presents a framework for collaborative mapping applied to outdoor environments considering a decentralized approach. The mapping approach uses range measurements from a 3D lidar moving in six degrees of freedom. For that case, each robot performs a local SLAM. The maps are then merged when communication is available between the mobile units. This allows building a global map and to improve the state estimation of each agent. Experimental results are presented, where partial maps of the same environment are aligned and merged coherently in spite of the noise from the lidar measurement.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Decentralized Collaborative Mapping for Outdoor Environments\",\"authors\":\"Luis F. Contreras-Samame, Olivier Kermorgant, P. Martinet\",\"doi\":\"10.1109/IRC.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient mapping in mobile robotics may involve the participation of several agents. In this context, this article presents a framework for collaborative mapping applied to outdoor environments considering a decentralized approach. The mapping approach uses range measurements from a 3D lidar moving in six degrees of freedom. For that case, each robot performs a local SLAM. The maps are then merged when communication is available between the mobile units. This allows building a global map and to improve the state estimation of each agent. Experimental results are presented, where partial maps of the same environment are aligned and merged coherently in spite of the noise from the lidar measurement.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在移动机器人中,一个有效的映射可能需要多个智能体的参与。在这种情况下,本文提出了一个考虑分散式方法的室外环境协同测绘框架。这种测绘方法使用了六自由度移动的3D激光雷达的距离测量。在这种情况下,每个机器人执行一个本地SLAM。当移动单位之间的通信可用时,地图将被合并。这允许构建全局地图并改进每个代理的状态估计。实验结果表明,尽管激光雷达测量存在噪声,但同一环境的部分地图仍能进行相干对齐和合并。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Decentralized Collaborative Mapping for Outdoor Environments
An efficient mapping in mobile robotics may involve the participation of several agents. In this context, this article presents a framework for collaborative mapping applied to outdoor environments considering a decentralized approach. The mapping approach uses range measurements from a 3D lidar moving in six degrees of freedom. For that case, each robot performs a local SLAM. The maps are then merged when communication is available between the mobile units. This allows building a global map and to improve the state estimation of each agent. Experimental results are presented, where partial maps of the same environment are aligned and merged coherently in spite of the noise from the lidar measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1