混合爬壁AGV电机建模与磁附着仿真

Lokesh Ramesh, Crispin Marie Peter G, Gladwyn K, Sundeep R, T. A, Ramkumar
{"title":"混合爬壁AGV电机建模与磁附着仿真","authors":"Lokesh Ramesh, Crispin Marie Peter G, Gladwyn K, Sundeep R, T. A, Ramkumar","doi":"10.1109/IBSSC56953.2022.10037311","DOIUrl":null,"url":null,"abstract":"The AGV's are beginning to change the way of the industries, there are still rooms for development of those AGV's. The hybrid AGV's which can climb walls and move on land for various purposes. The magnetic adhesion plays a major role in deciding the payload of the robot. The distance between the magnet and the iron rail surface embedded in the wall. The analysis was done on the magnet and the metal surface with FEMM software to find the best position to place the magnet in the robot. The distance between the magnet and the iron rail was also analyzed to reduce the friction and avoid magnets sticking to the rail. As it was found that the magnets positioning does play an important role in the overall payload and to give the required data to design the AVG to increase its performance. The design of the AGV is an important factor to consider the payload and the balance of the robot while climbing the wall to make sure that it doesn't fail. The motor modelling has been done with the help of MATLAB and the results are been recorded and is used for further studies and to incorporate the same in the mechanical design and make the AGV work properly. In summarizing the work, the magnets along with a design can improve the overall ability to perform the operations is essential, also the Motor modelling and the analysis done in MATLAB with Simulink will provide the results and data to make the AGV move with more precision.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor Modelling and Magnetic adhesion Simulation For Hybrid Wall Climbing AGV\",\"authors\":\"Lokesh Ramesh, Crispin Marie Peter G, Gladwyn K, Sundeep R, T. A, Ramkumar\",\"doi\":\"10.1109/IBSSC56953.2022.10037311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AGV's are beginning to change the way of the industries, there are still rooms for development of those AGV's. The hybrid AGV's which can climb walls and move on land for various purposes. The magnetic adhesion plays a major role in deciding the payload of the robot. The distance between the magnet and the iron rail surface embedded in the wall. The analysis was done on the magnet and the metal surface with FEMM software to find the best position to place the magnet in the robot. The distance between the magnet and the iron rail was also analyzed to reduce the friction and avoid magnets sticking to the rail. As it was found that the magnets positioning does play an important role in the overall payload and to give the required data to design the AVG to increase its performance. The design of the AGV is an important factor to consider the payload and the balance of the robot while climbing the wall to make sure that it doesn't fail. The motor modelling has been done with the help of MATLAB and the results are been recorded and is used for further studies and to incorporate the same in the mechanical design and make the AGV work properly. In summarizing the work, the magnets along with a design can improve the overall ability to perform the operations is essential, also the Motor modelling and the analysis done in MATLAB with Simulink will provide the results and data to make the AGV move with more precision.\",\"PeriodicalId\":426897,\"journal\":{\"name\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC56953.2022.10037311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AGV正在开始改变行业的方式,AGV仍有很大的发展空间。混合AGV可以爬墙和在陆地上移动的各种目的。磁附着对机器人的有效载荷起着重要的决定作用。磁铁与嵌在壁上的铁轨表面之间的距离。利用FEMM软件对磁体和金属表面进行分析,确定磁体在机器人中的最佳放置位置。分析了磁体与钢轨之间的距离,以减小摩擦,避免磁体粘在钢轨上。因为它被发现,磁铁的定位确实发挥了重要作用,在整体有效载荷和提供所需的数据来设计AVG,以提高其性能。AGV的设计是考虑机器人爬墙时的有效载荷和平衡的重要因素,以确保其不会失败。在MATLAB的帮助下完成了电机建模,并记录了结果,用于进一步研究,并将其纳入机械设计,使AGV正常工作。综上所述,磁体的设计可以提高AGV的整体操作能力,并且在MATLAB中使用Simulink进行电机建模和分析将提供结果和数据,使AGV的移动更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motor Modelling and Magnetic adhesion Simulation For Hybrid Wall Climbing AGV
The AGV's are beginning to change the way of the industries, there are still rooms for development of those AGV's. The hybrid AGV's which can climb walls and move on land for various purposes. The magnetic adhesion plays a major role in deciding the payload of the robot. The distance between the magnet and the iron rail surface embedded in the wall. The analysis was done on the magnet and the metal surface with FEMM software to find the best position to place the magnet in the robot. The distance between the magnet and the iron rail was also analyzed to reduce the friction and avoid magnets sticking to the rail. As it was found that the magnets positioning does play an important role in the overall payload and to give the required data to design the AVG to increase its performance. The design of the AGV is an important factor to consider the payload and the balance of the robot while climbing the wall to make sure that it doesn't fail. The motor modelling has been done with the help of MATLAB and the results are been recorded and is used for further studies and to incorporate the same in the mechanical design and make the AGV work properly. In summarizing the work, the magnets along with a design can improve the overall ability to perform the operations is essential, also the Motor modelling and the analysis done in MATLAB with Simulink will provide the results and data to make the AGV move with more precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Ride Hailing System using Blockchain and IPFS Implementation of RFID-based Lab Inventory System Monkeypox Skin Lesion Classification Using Transfer Learning Approach A Solution to the Techno-Economic Generation Expansion Planning using Enhanced Dwarf Mongoose Optimization Algorithm Citation Count Prediction Using Different Time Series Analysis Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1