基于分布式学习博弈的飞基站频谱共享与资源选择

Ghassan Alnwaimi, S. Vahid, K. Moessner
{"title":"基于分布式学习博弈的飞基站频谱共享与资源选择","authors":"Ghassan Alnwaimi, S. Vahid, K. Moessner","doi":"10.1109/ICT.2015.7124706","DOIUrl":null,"url":null,"abstract":"This work investigates enabling technology for spectrum sharing in heterogeneous networks (HetNets) deployment, particularly, when a layer of femtocells (FCs) overlaid upon a mobile cellular network. We propose a fully distributed strategic learning based model that enables Femtocells to autonomously identify spectrum use pattern, and accordingly select available resources, such as to operate under restrictions of avoiding interference and satisfy a certain QoS requirements. The simulation results show that the proposed model can identify unused spectral resources of underlying macrocells network, and FCs can autonomously adjust their spectrum resources and converge to a solution concept that satisfy both networks conditions. We show that intra/inter-tier interference can be reduced significantly, thus resulting in higher cell throughputs. Such a distributed intelligent scheme can provide a practical solution to the main challenges in opportunistic spectrum use and interference management in HetNets.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed learning game based spectrum sharing and resource selection for femtocells\",\"authors\":\"Ghassan Alnwaimi, S. Vahid, K. Moessner\",\"doi\":\"10.1109/ICT.2015.7124706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates enabling technology for spectrum sharing in heterogeneous networks (HetNets) deployment, particularly, when a layer of femtocells (FCs) overlaid upon a mobile cellular network. We propose a fully distributed strategic learning based model that enables Femtocells to autonomously identify spectrum use pattern, and accordingly select available resources, such as to operate under restrictions of avoiding interference and satisfy a certain QoS requirements. The simulation results show that the proposed model can identify unused spectral resources of underlying macrocells network, and FCs can autonomously adjust their spectrum resources and converge to a solution concept that satisfy both networks conditions. We show that intra/inter-tier interference can be reduced significantly, thus resulting in higher cell throughputs. Such a distributed intelligent scheme can provide a practical solution to the main challenges in opportunistic spectrum use and interference management in HetNets.\",\"PeriodicalId\":375669,\"journal\":{\"name\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2015.7124706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了异构网络(HetNets)部署中频谱共享的启用技术,特别是当一层飞蜂窝(fc)覆盖在移动蜂窝网络上时。我们提出了一种基于全分布式策略学习的模型,使Femtocells能够自主识别频谱使用模式,并据此选择可用资源,如在避免干扰和满足一定QoS要求的限制下运行。仿真结果表明,该模型能够识别底层宏蜂窝网络中未使用的频谱资源,fc能够自主调整其频谱资源,并收敛到同时满足两种网络条件的解概念。我们表明,层内/层间干扰可以显著减少,从而导致更高的细胞吞吐量。这种分布式智能方案可以为解决HetNets中机会频谱使用和干扰管理的主要挑战提供实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed learning game based spectrum sharing and resource selection for femtocells
This work investigates enabling technology for spectrum sharing in heterogeneous networks (HetNets) deployment, particularly, when a layer of femtocells (FCs) overlaid upon a mobile cellular network. We propose a fully distributed strategic learning based model that enables Femtocells to autonomously identify spectrum use pattern, and accordingly select available resources, such as to operate under restrictions of avoiding interference and satisfy a certain QoS requirements. The simulation results show that the proposed model can identify unused spectral resources of underlying macrocells network, and FCs can autonomously adjust their spectrum resources and converge to a solution concept that satisfy both networks conditions. We show that intra/inter-tier interference can be reduced significantly, thus resulting in higher cell throughputs. Such a distributed intelligent scheme can provide a practical solution to the main challenges in opportunistic spectrum use and interference management in HetNets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial neural network-based nonlinear channel equalization: A soft-output perspective Joint resource scheduling for full-duplex cellular system Spatial coupling of root-LDPC: Parity bits doping Simplified robust design for nonregenerativemm multicasting MIMO relay systems A tree-based regularized orthogonal matching pursuit algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1