少镜头模型不可知论联邦学习

Wenke Huang, Mang Ye, Bo Du, Xiand Gao
{"title":"少镜头模型不可知论联邦学习","authors":"Wenke Huang, Mang Ye, Bo Du, Xiand Gao","doi":"10.1145/3503161.3548764","DOIUrl":null,"url":null,"abstract":"Federated learning has received increasing attention for its ability to collaborative learning without leaking privacy. Promising advances have been achieved under the assumption that participants share the same model structure. However, when participants independently customize their models, models suffer communication barriers, which leads the model heterogeneity problem. Moreover, in real scenarios, the data held by participants is often limited, making the local models trained only on private data present poor performance. Consequently, this paper studies a new challenging problem, namely few-shot model agnostic federated learning, where the local participants design their independent models from their limited private datasets. Considering the scarcity of the private data, we propose to utilize the abundant public available datasets for bridging the gap between local private participants. However, its usage also brings in two problems: inconsistent labels and large domain gap between the public and private datasets. To address these issues, this paper presents a novel framework with two main parts: 1) model agnostic federated learning, it performs public-private communication by unifying the model prediction outputs on the shared public datasets; 2) latent embedding adaptation, it addresses the domain gap with an adversarial learning scheme to discriminate the public and private domains. Together with theoretical generalization bound analysis, comprehensive experiments under various settings have verified our advantage over existing methods. It provides a simple but effective baseline for future advancement. The code is available at https://github.com/WenkeHuang/FSMAFL.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Few-Shot Model Agnostic Federated Learning\",\"authors\":\"Wenke Huang, Mang Ye, Bo Du, Xiand Gao\",\"doi\":\"10.1145/3503161.3548764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning has received increasing attention for its ability to collaborative learning without leaking privacy. Promising advances have been achieved under the assumption that participants share the same model structure. However, when participants independently customize their models, models suffer communication barriers, which leads the model heterogeneity problem. Moreover, in real scenarios, the data held by participants is often limited, making the local models trained only on private data present poor performance. Consequently, this paper studies a new challenging problem, namely few-shot model agnostic federated learning, where the local participants design their independent models from their limited private datasets. Considering the scarcity of the private data, we propose to utilize the abundant public available datasets for bridging the gap between local private participants. However, its usage also brings in two problems: inconsistent labels and large domain gap between the public and private datasets. To address these issues, this paper presents a novel framework with two main parts: 1) model agnostic federated learning, it performs public-private communication by unifying the model prediction outputs on the shared public datasets; 2) latent embedding adaptation, it addresses the domain gap with an adversarial learning scheme to discriminate the public and private domains. Together with theoretical generalization bound analysis, comprehensive experiments under various settings have verified our advantage over existing methods. It provides a simple but effective baseline for future advancement. The code is available at https://github.com/WenkeHuang/FSMAFL.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

联邦学习因其不泄露隐私的协同学习能力而受到越来越多的关注。在参与者共享相同模型结构的假设下,已经取得了可喜的进展。然而,当参与者独立定制他们的模型时,模型存在沟通障碍,从而导致模型异构问题。此外,在实际场景中,参与者所持有的数据往往是有限的,使得仅在私有数据上训练的局部模型表现不佳。因此,本文研究了一个新的具有挑战性的问题,即少镜头模型不可知论联邦学习,其中局部参与者从他们有限的私有数据集设计他们的独立模型。考虑到私人数据的稀缺性,我们建议利用丰富的公共可用数据集来弥合本地私人参与者之间的差距。然而,它的使用也带来了两个问题:标签不一致和公共和私有数据集之间的大领域差距。为了解决这些问题,本文提出了一个新的框架,主要包括两个部分:1)模型不可知的联邦学习,它通过统一共享公共数据集上的模型预测输出来进行公私通信;2)潜嵌入自适应,利用对抗学习方案区分公共和私有领域,解决领域差距问题。结合理论泛化界分析,各种设置下的综合实验验证了我们优于现有方法的优势。它为未来的发展提供了一个简单而有效的基准。代码可在https://github.com/WenkeHuang/FSMAFL上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Few-Shot Model Agnostic Federated Learning
Federated learning has received increasing attention for its ability to collaborative learning without leaking privacy. Promising advances have been achieved under the assumption that participants share the same model structure. However, when participants independently customize their models, models suffer communication barriers, which leads the model heterogeneity problem. Moreover, in real scenarios, the data held by participants is often limited, making the local models trained only on private data present poor performance. Consequently, this paper studies a new challenging problem, namely few-shot model agnostic federated learning, where the local participants design their independent models from their limited private datasets. Considering the scarcity of the private data, we propose to utilize the abundant public available datasets for bridging the gap between local private participants. However, its usage also brings in two problems: inconsistent labels and large domain gap between the public and private datasets. To address these issues, this paper presents a novel framework with two main parts: 1) model agnostic federated learning, it performs public-private communication by unifying the model prediction outputs on the shared public datasets; 2) latent embedding adaptation, it addresses the domain gap with an adversarial learning scheme to discriminate the public and private domains. Together with theoretical generalization bound analysis, comprehensive experiments under various settings have verified our advantage over existing methods. It provides a simple but effective baseline for future advancement. The code is available at https://github.com/WenkeHuang/FSMAFL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1