Septian Isnanto, Suryarini Widodo
{"title":"PENERAPAN DATA MINING PADA PENERIMAAN MAHASISWA BARU DENGAN ALGORITMA K-MEANS CLUSTERING","authors":"Septian Isnanto, Suryarini Widodo","doi":"10.37600/tekinkom.v4i2.367","DOIUrl":null,"url":null,"abstract":"This paper aims to grouping data using Clustering method with k-means algorithm to find potential majors and type of schools that produce feature students who have a good GPA score in semester 1 and semester 2 at Politeknik STMI Jakarta. Dataset from academic data for 2017-2020 has been processed with Rapid Miner showing that in Automotive Business Administration study program there are 3 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in Science and Social Sciences. Automotive Industry Information System study program produces 2 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in science and vocational high school majoring in mechanical engineering. Automotive Industrial Engineering study program produces 2 clusters of students where cluster 1 marked as best cluster is dominated by high school students majoring in science. Polymer Chemical Engineering study program produces 6 student clusters where cluster 4 marked as best cluster which all come from high school students majoring in science.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v4i2.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用聚类方法和k-means算法对数据进行分组,找到Politeknik STMI Jakarta第一学期和第二学期GPA成绩好的特色学生的潜在专业和学校类型。使用Rapid Miner对2017-2020年的学术数据集进行了处理,结果表明,在汽车工商管理研究项目中,有3个学生集群,其中被标记为最佳集群的第0个集群主要是科学和社会科学专业的高中生。汽车工业信息系统研究项目产生了2个学生集群,其中被评为最佳集群的集群0主要是理工科和机械工程专业的高中学生。汽车工业工程研究项目产生了2个学生集群,其中第1个集群被标记为最佳集群,主要是理科专业的高中生。聚合物化学工程研究项目产生了6个学生集群,其中集群4被标记为最好的集群,这些学生都来自于主修科学的高中生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PENERAPAN DATA MINING PADA PENERIMAAN MAHASISWA BARU DENGAN ALGORITMA K-MEANS CLUSTERING
This paper aims to grouping data using Clustering method with k-means algorithm to find potential majors and type of schools that produce feature students who have a good GPA score in semester 1 and semester 2 at Politeknik STMI Jakarta. Dataset from academic data for 2017-2020 has been processed with Rapid Miner showing that in Automotive Business Administration study program there are 3 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in Science and Social Sciences. Automotive Industry Information System study program produces 2 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in science and vocational high school majoring in mechanical engineering. Automotive Industrial Engineering study program produces 2 clusters of students where cluster 1 marked as best cluster is dominated by high school students majoring in science. Polymer Chemical Engineering study program produces 6 student clusters where cluster 4 marked as best cluster which all come from high school students majoring in science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI USABILITY PADA APLIKASI IMMERSIVE STORY TELLING SATUA I BELOG IMPLEMENTASI TEKNOLOGI VIRTUAL DALAM VISUALISASI PENGENALAN KAMPUS MENGGUNAKAN WEBVR PENGEBANGAN MEDIA INTERAKTIF BERORIENTASI HOTS (HIGHER ORDER THINGKING SKILLS) PADA MATAPELAJARAN BILOGI BERBASIS ANDROID SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN OBYEK WISATA TERBAIK DI KABUPATEN SRAGEN DENGAN METODE WEIGHTED PRODUCT DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1