基于k均值聚类的c波段信号干扰检测

S. Surya Natarajan, R. Ateesh Varun, G. Shivasubramanian, D. Thamayandran, M. Dharani, R. Gandhiraj, G. S. Shanmugha Sundaram, A. K. Pradeep Kumar, N. Binoy, R. Thiruvengadathan, D. S. Harish Ram
{"title":"基于k均值聚类的c波段信号干扰检测","authors":"S. Surya Natarajan, R. Ateesh Varun, G. Shivasubramanian, D. Thamayandran, M. Dharani, R. Gandhiraj, G. S. Shanmugha Sundaram, A. K. Pradeep Kumar, N. Binoy, R. Thiruvengadathan, D. S. Harish Ram","doi":"10.1109/ICCSP48568.2020.9182228","DOIUrl":null,"url":null,"abstract":"Interference is a main disruptive phenomenon which degrades the performance of communication systems and in general the quality of signal acquisition. Real-time communication through a channel is never free from signal disrupting phenomena like interference, distortion and noise. Hence it is essential to study their effects and methods of identifying them. Conventional methods to identify, estimate and mitigate interference are model driven. A data driven approach is far more efficient and adaptable than model driven methods. In this paper, we exemplify the use of a data driven approach to identify signatures of interference based on analysis of the acquired RF data.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Interference in C-Band Signals using K-Means Clustering\",\"authors\":\"S. Surya Natarajan, R. Ateesh Varun, G. Shivasubramanian, D. Thamayandran, M. Dharani, R. Gandhiraj, G. S. Shanmugha Sundaram, A. K. Pradeep Kumar, N. Binoy, R. Thiruvengadathan, D. S. Harish Ram\",\"doi\":\"10.1109/ICCSP48568.2020.9182228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference is a main disruptive phenomenon which degrades the performance of communication systems and in general the quality of signal acquisition. Real-time communication through a channel is never free from signal disrupting phenomena like interference, distortion and noise. Hence it is essential to study their effects and methods of identifying them. Conventional methods to identify, estimate and mitigate interference are model driven. A data driven approach is far more efficient and adaptable than model driven methods. In this paper, we exemplify the use of a data driven approach to identify signatures of interference based on analysis of the acquired RF data.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

干扰是一种主要的破坏性现象,它会降低通信系统的性能,并在总体上影响信号采集的质量。通过信道进行实时通信永远不会摆脱干扰、失真和噪声等信号干扰现象。因此,有必要研究它们的作用和识别方法。传统的识别、估计和减轻干扰的方法是模型驱动的。数据驱动的方法比模型驱动的方法更有效,适应性更强。在本文中,我们举例说明了使用数据驱动的方法来识别基于分析采集的射频数据的干扰特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Interference in C-Band Signals using K-Means Clustering
Interference is a main disruptive phenomenon which degrades the performance of communication systems and in general the quality of signal acquisition. Real-time communication through a channel is never free from signal disrupting phenomena like interference, distortion and noise. Hence it is essential to study their effects and methods of identifying them. Conventional methods to identify, estimate and mitigate interference are model driven. A data driven approach is far more efficient and adaptable than model driven methods. In this paper, we exemplify the use of a data driven approach to identify signatures of interference based on analysis of the acquired RF data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1