考虑磁路的并联电枢绕组循环电流计算方法

J. Yoshida, N. Hino, Kazuhiko Takahashi, A. Nakahara, A. Komura, K. Hattori
{"title":"考虑磁路的并联电枢绕组循环电流计算方法","authors":"J. Yoshida, N. Hino, Kazuhiko Takahashi, A. Nakahara, A. Komura, K. Hattori","doi":"10.1109/PESMG.2013.6672197","DOIUrl":null,"url":null,"abstract":"Recently, the capacity of turbo generators used in power plants is increasing in order to keep up with the growth of electric power consumption in the world. Turbo generators are consequently experiencing problems, including increasing electromagnetic force, temperature rise of armature coils, etc., as we try to increase the armature current to keep pace with the capacity increase. One way of avoiding these problems is to increase the number of parallel armature windings for decreasing the armature current per coil. However, the circulating current in the parallel windings is generated by the difference of the linkage flux of each winding, when the number of parallel windings is not a divisor of pole numbers. In this paper, we propose a simple method to calculate the circulating current by using a magnetic circuit in the design phase. We confirmed the proposed method has a similar accuracy and faster performance in comparison with the finite element method (FEM) analysis. And then we applied the proposed method to a calculation of the circulating current in 2- and 4-pole generators and considered the factors affecting the circulating current.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Calculation method of circulating current in parallel armature windings in consideration of magnetic circuit\",\"authors\":\"J. Yoshida, N. Hino, Kazuhiko Takahashi, A. Nakahara, A. Komura, K. Hattori\",\"doi\":\"10.1109/PESMG.2013.6672197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the capacity of turbo generators used in power plants is increasing in order to keep up with the growth of electric power consumption in the world. Turbo generators are consequently experiencing problems, including increasing electromagnetic force, temperature rise of armature coils, etc., as we try to increase the armature current to keep pace with the capacity increase. One way of avoiding these problems is to increase the number of parallel armature windings for decreasing the armature current per coil. However, the circulating current in the parallel windings is generated by the difference of the linkage flux of each winding, when the number of parallel windings is not a divisor of pole numbers. In this paper, we propose a simple method to calculate the circulating current by using a magnetic circuit in the design phase. We confirmed the proposed method has a similar accuracy and faster performance in comparison with the finite element method (FEM) analysis. And then we applied the proposed method to a calculation of the circulating current in 2- and 4-pole generators and considered the factors affecting the circulating current.\",\"PeriodicalId\":433870,\"journal\":{\"name\":\"2013 IEEE Power & Energy Society General Meeting\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESMG.2013.6672197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,为了跟上世界电力消费的增长,发电厂的汽轮发电机容量也在不断增加。汽轮发电机因此遇到的问题,包括增加电磁力,电枢线圈的温升等,因为我们试图增加电枢电流,以跟上容量的增加。避免这些问题的一种方法是增加并联电枢绕组的数量,以减少每个线圈的电枢电流。然而,当并联绕组数不是极数的因数时,并联绕组中的循环电流是由各绕组的联动磁通的差异产生的。本文提出了一种在设计阶段利用磁路计算循环电流的简单方法。结果表明,该方法与有限元分析方法具有相似的精度和更快的计算速度。然后将该方法应用于二极和四极发电机的循环电流计算,并考虑了影响循环电流的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation method of circulating current in parallel armature windings in consideration of magnetic circuit
Recently, the capacity of turbo generators used in power plants is increasing in order to keep up with the growth of electric power consumption in the world. Turbo generators are consequently experiencing problems, including increasing electromagnetic force, temperature rise of armature coils, etc., as we try to increase the armature current to keep pace with the capacity increase. One way of avoiding these problems is to increase the number of parallel armature windings for decreasing the armature current per coil. However, the circulating current in the parallel windings is generated by the difference of the linkage flux of each winding, when the number of parallel windings is not a divisor of pole numbers. In this paper, we propose a simple method to calculate the circulating current by using a magnetic circuit in the design phase. We confirmed the proposed method has a similar accuracy and faster performance in comparison with the finite element method (FEM) analysis. And then we applied the proposed method to a calculation of the circulating current in 2- and 4-pole generators and considered the factors affecting the circulating current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing statistical bounds on aggregated demand-based primary frequency control SGSim: A unified smart grid simulator FIDVR events analysis part 1 Solid state transformer in the future smart electrical system Challenges for special protection systems in the Chilean electricity market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1