锂离子电池剩余使用寿命估算融合预测的不确定性量化

Datong Liu, Yue Luo, Limeng Guo, Yu Peng
{"title":"锂离子电池剩余使用寿命估算融合预测的不确定性量化","authors":"Datong Liu, Yue Luo, Limeng Guo, Yu Peng","doi":"10.1109/ICPHM.2013.6621441","DOIUrl":null,"url":null,"abstract":"The uncertainty of prognostics and remaining useful life (RUL) estimation for the lithium-ion battery is emphasized in the battery management system (BMS). Many machine learning algorithms and statistical methods can not only realize the RUL prediction but also provide the probability density function (PDF) as the prognostic uncertainty representation, involving particle filter (PF), Relevance Vector Machine (RVM), etc. This paper presents a fusion RUL prediction approach with PF algorithm and data-driven autoregression (AR) algorithm for lithium-ion battery. Moreover, a framework to quantitatively analyze and evaluate the PDF distribution of the lithium-ion battery RUL prediction is presented. The probability confidence interval estimation, PDF histogram and distribution hypothesis test are included in quantifying the uncertainty. These quantitative analysis results can be meaningful for lithium-ion battery health management and maintenance. The experimental results with the battery data of NASA Ames Prognostics Data Repository show that the proposed framework can achieve the quantification of PDF to introduce the reference for the corresponding maintenance and management. The proposed work also shows potential prospective for industrial application.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Uncertainty quantification of fusion prognostics for lithium-ion battery remaining useful life estimation\",\"authors\":\"Datong Liu, Yue Luo, Limeng Guo, Yu Peng\",\"doi\":\"10.1109/ICPHM.2013.6621441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncertainty of prognostics and remaining useful life (RUL) estimation for the lithium-ion battery is emphasized in the battery management system (BMS). Many machine learning algorithms and statistical methods can not only realize the RUL prediction but also provide the probability density function (PDF) as the prognostic uncertainty representation, involving particle filter (PF), Relevance Vector Machine (RVM), etc. This paper presents a fusion RUL prediction approach with PF algorithm and data-driven autoregression (AR) algorithm for lithium-ion battery. Moreover, a framework to quantitatively analyze and evaluate the PDF distribution of the lithium-ion battery RUL prediction is presented. The probability confidence interval estimation, PDF histogram and distribution hypothesis test are included in quantifying the uncertainty. These quantitative analysis results can be meaningful for lithium-ion battery health management and maintenance. The experimental results with the battery data of NASA Ames Prognostics Data Repository show that the proposed framework can achieve the quantification of PDF to introduce the reference for the corresponding maintenance and management. The proposed work also shows potential prospective for industrial application.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在电池管理系统(BMS)中,对锂离子电池的预测和剩余使用寿命(RUL)估计的不确定性进行了研究。许多机器学习算法和统计方法不仅可以实现RUL预测,而且可以提供概率密度函数(PDF)作为预测的不确定性表示,包括粒子滤波(PF)、相关向量机(RVM)等。提出了一种基于PF算法和数据驱动自回归(AR)算法的锂离子电池RUL预测融合方法。在此基础上,提出了锂离子电池RUL预测PDF分布的定量分析和评价框架。量化不确定性的方法包括概率置信区间估计、PDF直方图和分布假设检验。这些定量分析结果对锂离子电池的健康管理和维护具有重要意义。NASA艾姆斯预测数据库电池数据的实验结果表明,所提出的框架可以实现PDF的量化,为相应的维护和管理提供参考。所提出的工作也显示出潜在的工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty quantification of fusion prognostics for lithium-ion battery remaining useful life estimation
The uncertainty of prognostics and remaining useful life (RUL) estimation for the lithium-ion battery is emphasized in the battery management system (BMS). Many machine learning algorithms and statistical methods can not only realize the RUL prediction but also provide the probability density function (PDF) as the prognostic uncertainty representation, involving particle filter (PF), Relevance Vector Machine (RVM), etc. This paper presents a fusion RUL prediction approach with PF algorithm and data-driven autoregression (AR) algorithm for lithium-ion battery. Moreover, a framework to quantitatively analyze and evaluate the PDF distribution of the lithium-ion battery RUL prediction is presented. The probability confidence interval estimation, PDF histogram and distribution hypothesis test are included in quantifying the uncertainty. These quantitative analysis results can be meaningful for lithium-ion battery health management and maintenance. The experimental results with the battery data of NASA Ames Prognostics Data Repository show that the proposed framework can achieve the quantification of PDF to introduce the reference for the corresponding maintenance and management. The proposed work also shows potential prospective for industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1