高密度互连中碳纳米管凸点电学性能及稳定性的实验研究

Yan Zhang, Ying Zhou, Jing-yu Fan, D. Jiang, Yifeng Fu, Shiwei Ma, Johan Liu
{"title":"高密度互连中碳纳米管凸点电学性能及稳定性的实验研究","authors":"Yan Zhang, Ying Zhou, Jing-yu Fan, D. Jiang, Yifeng Fu, Shiwei Ma, Johan Liu","doi":"10.1109/NANO.2013.6720972","DOIUrl":null,"url":null,"abstract":"With the minimization development of electronic devices and products, nanotechnology and nanomaterials are widely applied in different fields of electronic packaging. Carbon nanotube (CNT) is an ideal material due to its excellent electrical and thermal conductivities. In the present paper, the application of CNT bundles as chip bumps was experimentally investigated. The electrical resistances of the CNT interconnects were measured, and the thermal and humidity test were conducted. In addition, the CNT forests on fine pitch copper lines under various environmental test conditions were observed to evaluate the stability.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"17 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental study on electrical properties and stability of CNT bumps in high density interconnects\",\"authors\":\"Yan Zhang, Ying Zhou, Jing-yu Fan, D. Jiang, Yifeng Fu, Shiwei Ma, Johan Liu\",\"doi\":\"10.1109/NANO.2013.6720972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the minimization development of electronic devices and products, nanotechnology and nanomaterials are widely applied in different fields of electronic packaging. Carbon nanotube (CNT) is an ideal material due to its excellent electrical and thermal conductivities. In the present paper, the application of CNT bundles as chip bumps was experimentally investigated. The electrical resistances of the CNT interconnects were measured, and the thermal and humidity test were conducted. In addition, the CNT forests on fine pitch copper lines under various environmental test conditions were observed to evaluate the stability.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"17 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6720972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着电子器件和产品的小型化发展,纳米技术和纳米材料在电子封装的各个领域得到了广泛的应用。碳纳米管具有优良的导电性和导热性,是一种理想的材料。本文通过实验研究了碳纳米管束作为芯片碰撞点的应用。测量了碳纳米管互连的电阻,并进行了热湿测试。此外,在不同的环境试验条件下,对细间距铜线上的碳纳米管森林进行了观察,以评价其稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on electrical properties and stability of CNT bumps in high density interconnects
With the minimization development of electronic devices and products, nanotechnology and nanomaterials are widely applied in different fields of electronic packaging. Carbon nanotube (CNT) is an ideal material due to its excellent electrical and thermal conductivities. In the present paper, the application of CNT bundles as chip bumps was experimentally investigated. The electrical resistances of the CNT interconnects were measured, and the thermal and humidity test were conducted. In addition, the CNT forests on fine pitch copper lines under various environmental test conditions were observed to evaluate the stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of quantum well thermoelectric energy harvester by CMOS process ESD protection design for radio-frequency integrated circuits in nanoscale CMOS technology Optical manipulation of biological cell without measurement of cell velocity A bottom-up engineered broadband optical nanoabsorber for radiometry and energy and harnessing applications Fabrication of multilayered tube-shaped microstructures embedding cells inside microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1