基于增长层次自组织图的心理任务分类及其脑电结构分析

Liu Hailong, Wang Jue, Z. Chong-xun
{"title":"基于增长层次自组织图的心理任务分类及其脑电结构分析","authors":"Liu Hailong, Wang Jue, Z. Chong-xun","doi":"10.1109/ICNIC.2005.1499856","DOIUrl":null,"url":null,"abstract":"The unsupervised method of growing hierarchical self-organizing map (GHSOM) was used to perform mental tasks classification. The GHSOM is an adaptive artificial neural network model with hierarchical architecture that is able to detect the hierarchical structure of data. The results indicate that GHSOM provides more detailed clustering information than SOM, and gives visual information about the separability of mental tasks in an intuitive way. The average classification accuracy across 130 task pairs by using GHSOM was up to 96.7%.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mental tasks classification and their EEG structures analysis by using the growing hierarchical self-organizing map\",\"authors\":\"Liu Hailong, Wang Jue, Z. Chong-xun\",\"doi\":\"10.1109/ICNIC.2005.1499856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsupervised method of growing hierarchical self-organizing map (GHSOM) was used to perform mental tasks classification. The GHSOM is an adaptive artificial neural network model with hierarchical architecture that is able to detect the hierarchical structure of data. The results indicate that GHSOM provides more detailed clustering information than SOM, and gives visual information about the separability of mental tasks in an intuitive way. The average classification accuracy across 130 task pairs by using GHSOM was up to 96.7%.\",\"PeriodicalId\":169717,\"journal\":{\"name\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIC.2005.1499856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

采用无监督分层自组织图生长方法(GHSOM)进行心理任务分类。GHSOM是一种具有层次结构的自适应人工神经网络模型,能够检测数据的层次结构。结果表明,GHSOM提供了比SOM更详细的聚类信息,并以直观的方式提供了关于心理任务可分性的视觉信息。在130个任务对中,GHSOM的平均分类准确率高达96.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mental tasks classification and their EEG structures analysis by using the growing hierarchical self-organizing map
The unsupervised method of growing hierarchical self-organizing map (GHSOM) was used to perform mental tasks classification. The GHSOM is an adaptive artificial neural network model with hierarchical architecture that is able to detect the hierarchical structure of data. The results indicate that GHSOM provides more detailed clustering information than SOM, and gives visual information about the separability of mental tasks in an intuitive way. The average classification accuracy across 130 task pairs by using GHSOM was up to 96.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical applications of BION/sup TM/ microstimulators Development of ultra small two-channel system of EEG radio telemetry Experiment research on the method of monitoring the depth of anesthesia Controlling epileptic seizures EEG with a dynamic neural population model Wavelet transform analyzing and real-time learning method for myoelectric signal in motion discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1