基于简单csp的无人机任务规划模型

Cristian Ramírez-Atencia, Gema Bello Orgaz, M. Rodríguez-Moreno, David Camacho
{"title":"基于简单csp的无人机任务规划模型","authors":"Cristian Ramírez-Atencia, Gema Bello Orgaz, M. Rodríguez-Moreno, David Camacho","doi":"10.1109/INISTA.2014.6873611","DOIUrl":null,"url":null,"abstract":"The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A simple CSP-based model for Unmanned Air Vehicle Mission Planning\",\"authors\":\"Cristian Ramírez-Atencia, Gema Bello Orgaz, M. Rodríguez-Moreno, David Camacho\",\"doi\":\"10.1109/INISTA.2014.6873611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.\",\"PeriodicalId\":339652,\"journal\":{\"name\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2014.6873611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对大量无人机的任务规划问题可以归结为一个时间约束满足问题。它包括一组应该在不同时间窗口访问的地点,以及车辆可以根据其特征(如有效载荷、速度或燃料容量)执行的动作。本文实现了一个时间约束模型,并通过在多个任务中执行回溯搜索来测试该模型的复杂度。实验阶段包括两个不同的阶段。一方面,几个任务模拟包含(n)无人机使用不同的传感器和特性位于不同的航路点,(m)请求任务不同的任务优先级已经进行。另一方面,第二个实验阶段使用回溯算法来查看整个解决方案空间,以测量问题的可伸缩性。这种可扩展性已被衡量为任务中要执行的任务数量与执行任务所需的无人机数量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple CSP-based model for Unmanned Air Vehicle Mission Planning
The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1