基于贝叶斯网络“混合”传播的入侵检测

F. Jemili, M. Zaghdoud, M. Ahmed
{"title":"基于贝叶斯网络“混合”传播的入侵检测","authors":"F. Jemili, M. Zaghdoud, M. Ahmed","doi":"10.1109/ISI.2009.5137285","DOIUrl":null,"url":null,"abstract":"The goal of a network-based intrusion detection system (IDS) is to identify malicious behaviour that targets a network and its resources. Intrusion detection parameters are numerous and in many cases they present uncertain and imprecise causal relationships which can affect attack types. A Bayesian Network (BN) is known as graphical modeling tool used to model decision problems containing uncertainty. In this paper, a BN is used to buidl automatic intrusion detection system based on signature recognition. A major difficulty of this system is that the uncertainty on parameters can have two origins. The first source of uncertainty","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Intrusion detection based on “Hybrid” propagation in Bayesian Networks\",\"authors\":\"F. Jemili, M. Zaghdoud, M. Ahmed\",\"doi\":\"10.1109/ISI.2009.5137285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of a network-based intrusion detection system (IDS) is to identify malicious behaviour that targets a network and its resources. Intrusion detection parameters are numerous and in many cases they present uncertain and imprecise causal relationships which can affect attack types. A Bayesian Network (BN) is known as graphical modeling tool used to model decision problems containing uncertainty. In this paper, a BN is used to buidl automatic intrusion detection system based on signature recognition. A major difficulty of this system is that the uncertainty on parameters can have two origins. The first source of uncertainty\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

基于网络的入侵检测系统(IDS)的目标是识别针对网络及其资源的恶意行为。入侵检测参数众多,在许多情况下,它们表现出不确定和不精确的因果关系,从而影响攻击类型。贝叶斯网络(BN)是一种图形化建模工具,用于对包含不确定性的决策问题进行建模。本文提出了一种基于签名识别的自动入侵检测系统。该系统的一个主要困难是参数的不确定性可以有两个来源。不确定性的第一个来源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion detection based on “Hybrid” propagation in Bayesian Networks
The goal of a network-based intrusion detection system (IDS) is to identify malicious behaviour that targets a network and its resources. Intrusion detection parameters are numerous and in many cases they present uncertain and imprecise causal relationships which can affect attack types. A Bayesian Network (BN) is known as graphical modeling tool used to model decision problems containing uncertainty. In this paper, a BN is used to buidl automatic intrusion detection system based on signature recognition. A major difficulty of this system is that the uncertainty on parameters can have two origins. The first source of uncertainty
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1