只有时间会告诉我们:用时变超图建模代码审查中的信息扩散

Michael Dorner, Darja Šmite, D. Méndez, K. Wnuk, J. Czerwonka
{"title":"只有时间会告诉我们:用时变超图建模代码审查中的信息扩散","authors":"Michael Dorner, Darja Šmite, D. Méndez, K. Wnuk, J. Czerwonka","doi":"10.1145/3544902.3546254","DOIUrl":null,"url":null,"abstract":"Background: Modern code review is expected to facilitate knowledge sharing: All relevant information, the collective expertise, and meta-information around the code change and its context become evident, transparent, and explicit in the corresponding code review discussion. The discussion participants can leverage this information in the following code reviews; the information diffuses through the communication network that emerges from code review. Traditional time-aggregated graphs fall short in rendering information diffusion as those models ignore the temporal order of the information exchange: Information can only be passed on if it is available in the first place. Aim: This manuscript presents a novel model based on time-varying hypergraphs for rendering information diffusion that overcomes the inherent limitations of traditional, time-aggregated graph-based models. Method: In an in-silico experiment, we simulate an information diffusion within the internal code review at Microsoft and show the empirical impact of time on a key characteristic of information diffusion: the number of reachable participants. Results: Time-aggregation significantly overestimates the paths of information diffusion available in communication networks and, thus, is neither precise nor accurate for modelling and measuring the spread of information within communication networks that emerge from code review. Conclusion: Our model overcomes the inherent limitations of traditional, static or time-aggregated, graph-based communication models and sheds the first light on information diffusion through code review. We believe that our model can serve as a foundation for understanding, measuring, managing, and improving knowledge sharing in code review in particular and information diffusion in software engineering in general.","PeriodicalId":220679,"journal":{"name":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Only Time Will Tell: Modelling Information Diffusion in Code Review with Time-Varying Hypergraphs\",\"authors\":\"Michael Dorner, Darja Šmite, D. Méndez, K. Wnuk, J. Czerwonka\",\"doi\":\"10.1145/3544902.3546254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Modern code review is expected to facilitate knowledge sharing: All relevant information, the collective expertise, and meta-information around the code change and its context become evident, transparent, and explicit in the corresponding code review discussion. The discussion participants can leverage this information in the following code reviews; the information diffuses through the communication network that emerges from code review. Traditional time-aggregated graphs fall short in rendering information diffusion as those models ignore the temporal order of the information exchange: Information can only be passed on if it is available in the first place. Aim: This manuscript presents a novel model based on time-varying hypergraphs for rendering information diffusion that overcomes the inherent limitations of traditional, time-aggregated graph-based models. Method: In an in-silico experiment, we simulate an information diffusion within the internal code review at Microsoft and show the empirical impact of time on a key characteristic of information diffusion: the number of reachable participants. Results: Time-aggregation significantly overestimates the paths of information diffusion available in communication networks and, thus, is neither precise nor accurate for modelling and measuring the spread of information within communication networks that emerge from code review. Conclusion: Our model overcomes the inherent limitations of traditional, static or time-aggregated, graph-based communication models and sheds the first light on information diffusion through code review. We believe that our model can serve as a foundation for understanding, measuring, managing, and improving knowledge sharing in code review in particular and information diffusion in software engineering in general.\",\"PeriodicalId\":220679,\"journal\":{\"name\":\"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544902.3546254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544902.3546254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:现代代码审查期望促进知识共享:在相应的代码审查讨论中,围绕代码更改及其上下文的所有相关信息、集体专业知识和元信息都变得明显、透明和明确。讨论参与者可以在接下来的代码评审中利用这些信息;信息通过代码审查产生的通信网络传播。传统的时间聚合图在呈现信息扩散方面存在不足,因为这些模型忽略了信息交换的时间顺序:信息只有在一开始就可用时才能传递。目的:本文提出了一种基于时变超图的新模型,用于呈现信息扩散,克服了传统的基于时间聚合图的模型的固有局限性。方法:在一个计算机实验中,我们模拟了微软内部代码审查中的信息扩散,并展示了时间对信息扩散的一个关键特征的经验影响:可访问参与者的数量。结果:时间聚合显著高估了通信网络中可用的信息传播路径,因此,对于代码审查产生的通信网络中的信息传播建模和测量既不精确也不准确。结论:我们的模型克服了传统的、静态的或时间聚合的、基于图形的通信模型的固有局限性,并通过代码审查首次揭示了信息扩散。我们相信我们的模型可以作为理解、度量、管理和改进代码审查中的知识共享以及软件工程中的信息扩散的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Only Time Will Tell: Modelling Information Diffusion in Code Review with Time-Varying Hypergraphs
Background: Modern code review is expected to facilitate knowledge sharing: All relevant information, the collective expertise, and meta-information around the code change and its context become evident, transparent, and explicit in the corresponding code review discussion. The discussion participants can leverage this information in the following code reviews; the information diffuses through the communication network that emerges from code review. Traditional time-aggregated graphs fall short in rendering information diffusion as those models ignore the temporal order of the information exchange: Information can only be passed on if it is available in the first place. Aim: This manuscript presents a novel model based on time-varying hypergraphs for rendering information diffusion that overcomes the inherent limitations of traditional, time-aggregated graph-based models. Method: In an in-silico experiment, we simulate an information diffusion within the internal code review at Microsoft and show the empirical impact of time on a key characteristic of information diffusion: the number of reachable participants. Results: Time-aggregation significantly overestimates the paths of information diffusion available in communication networks and, thus, is neither precise nor accurate for modelling and measuring the spread of information within communication networks that emerge from code review. Conclusion: Our model overcomes the inherent limitations of traditional, static or time-aggregated, graph-based communication models and sheds the first light on information diffusion through code review. We believe that our model can serve as a foundation for understanding, measuring, managing, and improving knowledge sharing in code review in particular and information diffusion in software engineering in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Relationship between Community and Design Smells in Open-Source Software Projects: An Empirical Study A Preliminary Investigation of MLOps Practices in GitHub PG-VulNet: Detect Supply Chain Vulnerabilities in IoT Devices using Pseudo-code and Graphs On the Relationship Between Story Points and Development Effort in Agile Open-Source Software DevOps Practitioners’ Perceptions of the Low-code Trend
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1