基于多尺度小波边缘检测和独立分量分析的人脸识别

K. Karande
{"title":"基于多尺度小波边缘检测和独立分量分析的人脸识别","authors":"K. Karande","doi":"10.1109/ICCICT.2012.6398140","DOIUrl":null,"url":null,"abstract":"In this paper we have proposed wavelet based edge detection algorithm that combines the coefficients of wavelet transforms on a series of scales. The outcome of this algorithm is edginess like information further used to obtain Independent Components using ICA algorithms. The combination of Multiscale wavelet based edge detection and Independent Component Analysis (ICA) is used for Face Recognition becomes a novel approach. The independent components obtained by ICA algorithms are used as feature vectors for classification. The Euclidean distance (L2) classifier is used for testing of images. The algorithm is tested on two different databases i.e Asian face database and Indian face database of face images for variation in illumination, facial expressions and facial poses up to 1800rotation angle. Encouraging results of this unique approach of face recognition has given future direction for research work in this area.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multiscale wavelet based edge detection and Independent Component Analysis (ICA) for Face Recognition\",\"authors\":\"K. Karande\",\"doi\":\"10.1109/ICCICT.2012.6398140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have proposed wavelet based edge detection algorithm that combines the coefficients of wavelet transforms on a series of scales. The outcome of this algorithm is edginess like information further used to obtain Independent Components using ICA algorithms. The combination of Multiscale wavelet based edge detection and Independent Component Analysis (ICA) is used for Face Recognition becomes a novel approach. The independent components obtained by ICA algorithms are used as feature vectors for classification. The Euclidean distance (L2) classifier is used for testing of images. The algorithm is tested on two different databases i.e Asian face database and Indian face database of face images for variation in illumination, facial expressions and facial poses up to 1800rotation angle. Encouraging results of this unique approach of face recognition has given future direction for research work in this area.\",\"PeriodicalId\":319467,\"journal\":{\"name\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICT.2012.6398140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于小波变换的边缘检测算法,该算法结合了一系列尺度上小波变换的系数。该算法得到的结果是棱角信息,进一步利用ICA算法获得独立分量。基于多尺度小波的边缘检测与独立分量分析(ICA)相结合成为人脸识别的一种新方法。将ICA算法得到的独立分量作为特征向量进行分类。欧几里得距离(L2)分类器用于图像的测试。该算法在两个不同的数据库上进行了测试,即亚洲人脸数据库和印度人脸数据库,用于检测光照、面部表情和面部姿势的变化,旋转角度可达1800个。这种独特的人脸识别方法取得了令人鼓舞的成果,为该领域的研究工作指明了未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale wavelet based edge detection and Independent Component Analysis (ICA) for Face Recognition
In this paper we have proposed wavelet based edge detection algorithm that combines the coefficients of wavelet transforms on a series of scales. The outcome of this algorithm is edginess like information further used to obtain Independent Components using ICA algorithms. The combination of Multiscale wavelet based edge detection and Independent Component Analysis (ICA) is used for Face Recognition becomes a novel approach. The independent components obtained by ICA algorithms are used as feature vectors for classification. The Euclidean distance (L2) classifier is used for testing of images. The algorithm is tested on two different databases i.e Asian face database and Indian face database of face images for variation in illumination, facial expressions and facial poses up to 1800rotation angle. Encouraging results of this unique approach of face recognition has given future direction for research work in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compression strategy for handwritten gray level document images EKSS: An efficient approach for similarity search A semi-blind image watermarking based on Discrete Wavelet Transform and Secret Sharing Neuro Analytical hierarchy process (NAHP) approach for CAD/CAM/CIM tool selection in the context of small manufacturing industries ‘Robot-Cloud’: A framework to assist heterogeneous low cost robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1