基于学习向量量化的自组织映射图像编码中的动态位分配

J. S. Neto, S.doN. Neto, Francisco Nascimento
{"title":"基于学习向量量化的自组织映射图像编码中的动态位分配","authors":"J. S. Neto, S.doN. Neto, Francisco Nascimento","doi":"10.1109/MWSCAS.1995.510224","DOIUrl":null,"url":null,"abstract":"A Self-Organizing Map (SOM) Neural Network for dynamic bit allocation in Adaptive Image Transform Coding is presented. The results shown in this paper are for nets with 30, 96 and 128 neurons in the input layer and 100 (10/spl times/10) neurons in the competition layer. The Learning Vector Quantization LVQ1 algorithm was used to enhance the clustering in the map.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic bit allocation in image coding using a Self-Organizing Map with Learning Vector Quantization\",\"authors\":\"J. S. Neto, S.doN. Neto, Francisco Nascimento\",\"doi\":\"10.1109/MWSCAS.1995.510224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Self-Organizing Map (SOM) Neural Network for dynamic bit allocation in Adaptive Image Transform Coding is presented. The results shown in this paper are for nets with 30, 96 and 128 neurons in the input layer and 100 (10/spl times/10) neurons in the competition layer. The Learning Vector Quantization LVQ1 algorithm was used to enhance the clustering in the map.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于自适应图像变换编码中动态位分配的自组织映射(SOM)神经网络。本文所显示的结果是针对输入层有30、96和128个神经元,竞争层有100个(10/spl倍/10)神经元的网络。使用学习向量量化LVQ1算法增强地图中的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic bit allocation in image coding using a Self-Organizing Map with Learning Vector Quantization
A Self-Organizing Map (SOM) Neural Network for dynamic bit allocation in Adaptive Image Transform Coding is presented. The results shown in this paper are for nets with 30, 96 and 128 neurons in the input layer and 100 (10/spl times/10) neurons in the competition layer. The Learning Vector Quantization LVQ1 algorithm was used to enhance the clustering in the map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A band-pass sigma-delta modulator architecture for digital radio Forecasting epidemiological time series with backpropagation neural networks Analog blocks for high-speed oversampled A/D converters Designing efficient redundant arithmetic processors for DSP applications Using neural networks for automatic speaker recognition: a practical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1