{"title":"美国东南部大烟山国家公园云杉-冷杉和北方硬木混交林的雾截流","authors":"Sarah Praskievicz, Rajesh Sigdel","doi":"10.1016/j.ecohyd.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Abstract: Fog interception is a significant component of the water balance of Southern Appalachian spruce-fir forests in the Southeast USA. Here, fog interception rates are quantified for spruce-fir and northern hardwood trees in Great Smoky Mountains National Park (GSMNP), Tennessee and North Carolina, as a precursor to examining how interspecific differences in fog interception could affect catchment water balances if there is widespread vegetation change from spruce-fir to hardwoods. A water-balance approach was implemented, based on paired open-site (rainfall) and beneath-canopy (throughfall) electronically recording tipping-bucket </span>rain gauges that were in place in the spruce-fir zone of GSMNP from May to November 2021. Comparing identified fog interception events to actual conditions captured by a webcam, 90% of verifiable events had conditions that were either clearly or potentially favorable for fog interception. Estimated fog interception gain ranged from averages of 0.24 to 0.69 mm day</span><sup>−1</sup><span>, representing 3 to 8% of rainfall. Results are consistent with the expectation of higher fog interception gain for spruce and fir than for birch, the representative hardwood species. Quantification of fog interception rates provides valuable information about ecohydrological processes in ecologically significant Southern Appalachian spruce-fir forests.</span></p></div>","PeriodicalId":56070,"journal":{"name":"Ecohydrology & Hydrobiology","volume":"23 4","pages":"Pages 532-541"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fog interception in spruce-fir and mixed northern hardwood forests of Great Smoky Mountains National Park, Southeast USA\",\"authors\":\"Sarah Praskievicz, Rajesh Sigdel\",\"doi\":\"10.1016/j.ecohyd.2023.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Abstract: Fog interception is a significant component of the water balance of Southern Appalachian spruce-fir forests in the Southeast USA. Here, fog interception rates are quantified for spruce-fir and northern hardwood trees in Great Smoky Mountains National Park (GSMNP), Tennessee and North Carolina, as a precursor to examining how interspecific differences in fog interception could affect catchment water balances if there is widespread vegetation change from spruce-fir to hardwoods. A water-balance approach was implemented, based on paired open-site (rainfall) and beneath-canopy (throughfall) electronically recording tipping-bucket </span>rain gauges that were in place in the spruce-fir zone of GSMNP from May to November 2021. Comparing identified fog interception events to actual conditions captured by a webcam, 90% of verifiable events had conditions that were either clearly or potentially favorable for fog interception. Estimated fog interception gain ranged from averages of 0.24 to 0.69 mm day</span><sup>−1</sup><span>, representing 3 to 8% of rainfall. Results are consistent with the expectation of higher fog interception gain for spruce and fir than for birch, the representative hardwood species. Quantification of fog interception rates provides valuable information about ecohydrological processes in ecologically significant Southern Appalachian spruce-fir forests.</span></p></div>\",\"PeriodicalId\":56070,\"journal\":{\"name\":\"Ecohydrology & Hydrobiology\",\"volume\":\"23 4\",\"pages\":\"Pages 532-541\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology & Hydrobiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642359323000575\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology & Hydrobiology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642359323000575","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Fog interception in spruce-fir and mixed northern hardwood forests of Great Smoky Mountains National Park, Southeast USA
Abstract: Fog interception is a significant component of the water balance of Southern Appalachian spruce-fir forests in the Southeast USA. Here, fog interception rates are quantified for spruce-fir and northern hardwood trees in Great Smoky Mountains National Park (GSMNP), Tennessee and North Carolina, as a precursor to examining how interspecific differences in fog interception could affect catchment water balances if there is widespread vegetation change from spruce-fir to hardwoods. A water-balance approach was implemented, based on paired open-site (rainfall) and beneath-canopy (throughfall) electronically recording tipping-bucket rain gauges that were in place in the spruce-fir zone of GSMNP from May to November 2021. Comparing identified fog interception events to actual conditions captured by a webcam, 90% of verifiable events had conditions that were either clearly or potentially favorable for fog interception. Estimated fog interception gain ranged from averages of 0.24 to 0.69 mm day−1, representing 3 to 8% of rainfall. Results are consistent with the expectation of higher fog interception gain for spruce and fir than for birch, the representative hardwood species. Quantification of fog interception rates provides valuable information about ecohydrological processes in ecologically significant Southern Appalachian spruce-fir forests.
期刊介绍:
Ecohydrology & Hydrobiology is an international journal that aims to advance ecohydrology as the study of the interplay between ecological and hydrological processes from molecular to river basin scales, and to promote its implementation as an integrative management tool to harmonize societal needs with biosphere potential.